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Heterogeneous agent models with aggregate risk

• Huge literature since Krusell-Smith and Den Haan from late 90s

• Key challenge: rational expectations + general equilibrium
⇒ distribution = state variable in Bellman equation (“Master equation”)

• true even though households/firms only care about prices

• intuition: equilibrium prices are not Markov, only the distribution is

⇒ forecast distributions to forecast prices

• Despite recent impressive advances to solve it directly, still lack of efficient
global solution methods for advanced HA models with aggregate risk

• This paper: sidestep master eqn with structural reinforcement learning
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Sidestep Master eqn using structural reinforcement learning

RL = learning value & policy functions in Markov decision processes from

Monte Carlo simulation

Here: RL about equilibrium prices but not individual states⇒ “Structural RL”

Outcome: efficient & flexible global solution method for HA models w agg risk

• solves problems traditional methods struggle with:

1. non-trivial market clearing (Huggett w agg. risk) ≈ 1 min on Google Colab

2. HANK with forward-looking Phillips curve ≈ 3 min
How does it work?

• in contrast to dynamic programming, RL can handle non-Markov states
• replace dist’n with low-dim. prices in state space, grid-based not DNNs
• efficient market clearing using policy functions (= demand curves)
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Our structural RL approach in a nutshell

• Step 1: parameterize policy function in low-dim state (s, z, p):

πθ(s, z, p) = {cθ(s, z, p), b′θ(s, z, p)},

with grid values as unknown parameters θ. Do NOT parameterize price functions.

• Step 2: GE simulation given πθ. For any θ, compute average lifetime utility

v(θ) ≈
1

N

N∑
n=1

T∑
t=0

βtu(cθ(s
n
t , z

n
t , p

n
t ))

along N simulated equilibrium paths with very large T .

• Step 3: structural policy gradient. Update θ by stochastic gradient ascent on

v(θ), and repeat Step 2.

Restricted perceptions equilibrium. Results so far very close to RE.
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Literature and contribution

Global solution methods for HA models with aggregate risk
Fernández-Villaverde et al, Han-Yang-E, Maliar-Maliar-Winant, Azinovic-Gaegauf-Scheidegger, Schaab, Gu et al...

• sidestep Master equation rather than “taming curse of dimensionality”
• Han-Yang-E DeepHAM = also RL-inspired

Global solution with bounded rationality Krusell-Smith, Den Haan, ...

• similarity: low-dim. state space; difference: no perceived law of motion

Adaptive (least squares) learning Bray, Marcet-Sargent, Evans-Honkapohja, Jacobson, Giusto, ...

• like RL = stochastic approximation method
Self-confirming equilibrium

• agents form price exp. from data generated by economy where they live

• but expectations incorrect for off-equilibrium (or rare) price realizations

• restricted perceptions equilibrium
“Sequence space” Auclert- Bardóczy-Rognlie-Straub

• global solution in sequence space (low-dim. prices) via Monte Carlo 4



Plan

1. HA Models: Setup

2. The RL Approach to HA macro without the Master equation

3. Computational experiments: Krusell-Smith and Huggett with agg risk

4. Forward looking Phillips curve: HANK with aggregate shocks.
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HA Models: Setup



Textbook HA model – Huggett (1993) with agg. risk

• Continuum of agents i , heterog. in (bi ,t , yi ,t), yi ,t = id. risk, agg. shock zt

• Households choose consumption ci ,t to maximize

vi ,0 = max
{ci ,t}

E0
∞∑
t=0

βtu(ci ,t) subject to

ci ,t + bi ,t+1 = Rtbi ,t + yi ,tzt , yi ,t+1 ∼ Ty (·|yi ,t), bi ,t+1 ≥ b

• State of the economy: distribution Gt(b, y) and zt . Prices: Rt .

• Market clearing: interest rates Rt such that∫
b′t(b, y) dGt(b, y) = B̄, all t

Note: agent problem depends on Gt only through low-dim. prices (Rt)
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General setup of HA models

• Continuum of agents i , heterog. in s ∈ Rn, e.g. wealth, labor prod’ty

• State of the economy: distribution Gt(s) and zt ∈ Rk . Prices pt ∈ R`.

• Agents choose consumption ci ,t to maximize

vi ,0 = max
{ci ,t}

E0
∞∑
t=0

βtu(ci ,t) subject to

si ,t+1 ∼ Ts(·|si ,t , ci ,t , pt , zt) = budget constraint + income process

• Low-dimensional equilibrium price functionals

pt = P
∗(Gt , zt), zt+1 ∼ Tz(·|zt)

P ∗ can be implicit e.g. Huggett, or analytical, e.g. Krusell-Smith 98.

Note: agent problem depends on Gt only through low-dim. price functionals
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Discretized representation

• Discretize individual state s ∈ {s1, ..., sJ} with J = J1 × ...× Jn
• Value function, distribution, etc are J-dimensional vectors

vt =

vt(s1)...
vt(sJ)

 , gt =

gt(s1)...

gt(sJ)


• Consumption policy c = πt(s, z)⇒ J × J transition matrix for s

Aπt(zt) with entries Pr(sj ′ |sj) = Ts(sj ′ |sj , πt(sj , zt), pt , zt)

• High-dimensional state (gt , zt) is Markov:

gt+1 = A
T
πt(zt)

gt , zt+1 ∼ Tz(·|zt)

• Low-dim equilibrium prices pt = P
∗(gt , zt): not Markov
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Key difficulty: equilibrium prices are not Markov

• Low-dim equilibrium prices pt = P
∗(gt , zt): not Markov

• ... only extremely high-dimensional (gt , zt) is

• Dynamic programming can only handle Markov states⇒ Master equation

V (s,g, z) = max
c
u(c)+βE

[
V (s ′,g′, z ′)|s,g, z

]
s.t. s ′ ∼ Ts(·|s, c, P ∗(g, z))

• Without Markov transition prob’s: cannot even write Bellman equation!

• Our solution: use RL to approximate value/policy functions with low-dim
non-Markov state variables
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Sidestepping the Master Equation

via Structural RL



What is reinforcement learning? A simple example

RL = learning value & policy functions from Monte Carlo RL Primer

Example: compute value function (eliminate actions & individual states for now)

v0 = E

[ ∞∑
t=0

βtu(pt)

]
, pt = exogenous stochastic process

Two approaches:

1. Dynamic programming: pt Markov and know f (p
′|p)

v(p) = u(p) + β

∫
v(p′)f (p′|p)dp′

2. Can also be extended to compute optimal policy: policy gradient method
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RL = learning value & policy functions from Monte Carlo RL Primer

Example: compute value function (eliminate actions & individual states for now)

v0 = E

[ ∞∑
t=0

βtu(pt)

]
, pt = exogenous stochastic process

Two approaches:

1. Dynamic programming: pt Markov and know f (p
′|p)

v(p) = u(p) + β

∫
v(p′)f (p′|p)dp′

2. RL/Monte Carlo: don’t know f but sample N trajectories
{
pit
}T
t=0

v0 ≈ v̂0 =
1

N

N∑
i=1

T∑
t=0

βtu(pit) or v̂ k0 = v̂
k−1
0 +

1

k

(
T∑
t=0

βtu(pkt )− v̂ k−10

)

Can also be extended to compute optimal policy: policy gradient method
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Sidestepping the Master Equation via Structural RL

Recall: states s = (b, y), prices p = (R), agents choose ci ,t to maximize

vi ,0 = max
{ci ,t}
E

[ ∞∑
t=0

βtu(ci ,t)

]
s.t. si ,t+1 ∼ Ts(·|si ,t , ci ,t , pt , zt), pt = P ∗(Gt , zt) (1)

Assumption 1: agents observe prices pt but not distribution Gt(s) Wold repr.

• pt can include moments of Gt , say GDP, as long as low-dimensional

Similarity to standard RL: don’t know transition prob. of prices pt

Difference to standard RL: know “local environment” Ts and u (Han-Yang-E)

Assumption 2: consumption policy π does not condition on price histories

ci ,t = π(si ,t , pt , zt)

• To do: keep track of price histories, e.g. h lags or RNN

RL: optimize π(si ,t , pt , zt) to solve (1) on the simulated paths. RL Primer
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Restricted perceptions equilibrium

A pair of mappings (π∗, P ∗) constitutes a restricted perceptions equilibrium if:

1. Optimality. For any price sequence {pt} generated by pt = P ∗(gt , zt) and
exogenous sequence {zt}, agents choose π∗(s, p, z) to solve:

max
π
E

[ ∞∑
t=0

βtu(π(st , pt , zt))

]
,

subject to the individual budget constraint and state transition equations.

2. Market clearing. For every period t, all markets clear.

3. Consistency. The prices that agents use to form expectations coincide

with the prices in the simulated economy when all agents follow π∗:

pt = P
∗(gt , zt), gt+1 = A

T
π∗(pt ,zt)

gt
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Simulating the economy given policy c = π(s, p, z)

For given (suboptimal) policy π(s, p, z), can simulate economy forward in time

• important: very cheap computationally with JAX on GPUs

Recall: discrete s ⇒ vectors π(p, z),gt , sparse transition matrix Aπ(p,z)

For given policy π(p, z) and (g0, z0), economy evolves as:

pt = P
∗(gt , zt)

gt+1 = A
T
π(pt ,zt)

gt

zt+1 ∼ Tz(·|zt)
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Efficient handling of non-trivial market clearing

St(p, z) = B̄, St(p, z) :=

∫
b′(s, p, z)dGt(s) = agg. saving supply

Key: integrate policies b′(s, p, z)⇒ aggregate saving on the price grid S(p, zt)

⇒ pt solves St(pt , zt) = b
′(pt , zt)

Tgt = B̄

0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8
Aggregate saving S(r, z)

0.01

0.02

0.03

0.04

0.05

0.06
In

te
re

st
 r

at
e 

r
z = 0.97, r = 0.031
z = 0.99, r = 0.027
z = 1.00, r = 0.024
z = 1.01, r = 0.021
z = 1.03, r = 0.017
z = 1.05, r = 0.017
Total assets B

Market clearing is part of environment, not another loop!
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Using knowledge of local environment

Value function for given policy π(s, p, z)

vπ(s, p, z) = E

[ ∞∑
t=0

βtu(π(si ,t , pt , zt))

∣∣∣∣si ,0 = s, p0 = p, z0 = z
]

(∗)

Partition state space (s, p, z) into known dynamics and unknown dynamics

• use transition matrix A to keep track of all s-transitions

• expectation E only over price trajectories {pt}∞t=0 and {zt}∞t=0

Write vπ(s, p, z) in (∗) as vector vπ(p, z):

vπ(p, z) = E
[
u0 + βA0u1 + β

2A0A1u2 + ...|p, z
]
= E

[ ∞∑
t=0

βtA0→tut

∣∣∣∣p, z
]

where ut = u(π(pt , zt)) and At = Aπ(pt ,zt) and A0→t = A0 · · ·At−1
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Summary: problem to be solved

Find optimal policy π(s, p, z) or π(p, z) that maximizes

vπ(p, z) = E

[ ∞∑
t=0

βtAπ,0→tu(π(pt , zt))

∣∣∣∣p0, z0 = p, z
]

taking as given evolution of equilibrium prices pt (agent does not use P
∗)

pt = P
∗(gt , zt), gt+1 = A

T
π̃(pt ,zt)

gt , zt+1 ∼ Tz(·|zt), t = 0, 1, ...

with (g0, z0) given, π̃ = π in eqm, and Aπ,0→t = Aπ(p0,z0) · · ·Aπ(pt−1,zt−1)

Key observation:

• State of economy = (g, z) = very high-dimensional
• But state in value/policy functions = (s, p, z) = very low-dimensional!
• No perceived law of motion, inner loop / outer loop (like in Krusell-Smith)

• GE problem only mildly more difficult than PE 16



RL policy gradient method for maximizing vπ

Find optimal policy π(p, z) that maximizes estimate of Ep0∼ψp,z0∼ψz [vπ(p0, z0)]:

v̂π =
1

N

N∑
i=1

[
T∑
t=0

βtAπ,0→tu(π(p
i
t , z

i
t))

]
with N price trajectories pit sampled from interacting with environment (rollouts):

pt = P
∗(gt , zt), gt+1 = A

T
π̃(pt ,zt)

gt , zt+1 ∼ Tz(·|zt), t = 0, 1, ...

with g0 ∼ ψg(·), z0 ∼ ψz(·) and with π̃ = π in equilibrium
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RL policy gradient method for maximizing vπ

Find optimal policy π(p, z) that maximizes estimate of Ep0∼ψp,z0∼ψz [vπ(p0, z0)]:

v̂π =
1

N

N∑
i=1

[
T∑
t=0

βtAπ,0→tu(π(p
i
t , z

i
t))

]
with N price trajectories pit sampled from interacting with environment (rollouts):

pt = P
∗(gt , zt), gt+1 = A

T
π̃(pt ,zt)

gt , zt+1 ∼ Tz(·|zt), t = 0, 1, ...

with g0 ∼ ψg(·), z0 ∼ ψz(·) and with π̃ = π in equilibrium

In practice, maximize scalar objective using gradient ascent:

L(θ) = dT0 v̂π =
J∑
j=1

d0(sj)v̂π(sj), d0(s) = uniform dist. over s

policy either grid based θ = [π(p1, z1), ...,π(pJ , zK)] or neural net π(s, p, z ; θ)

• low dim. ⇒ grid-based method works well so far, no need for neural nets!
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Computational graph for construction of v̂π

P*(.) P*(.) P*(.) P*(.)
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Computational experiments



Runtimes

• Efficient implementation in JAX for GPUs, run on Google Colab

• Stochastic algorithm: present averages over multiple runs

Model Average converge epoch # Runs Average Runtime (sec)

Krusell-Smith 438.4 10 56.55

Huggett with agg. shocks 480.6 10 75.29

HANK with agg. shocks 496.5 10 199.53

Partial equilibrium (Huggett) 289.3 10 39.49

Note: all experiments were implemented on the A100 GPU on Google Colab
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Krusell-Smith model



Computational experiments: Krusell-Smith model

Parameter Description Value

α Capital share 0.36

δ Capital depreciation rate 0.08

γ Discount factor 0.95

σ Coefficient of relative risk aversion 3

ρz Persistence of AR(1) for zt (log TFP) 0.9

νz Volatility of AR(1) for zt (log TFP) 0.03

Hyperparameter Description Value

Js1 Number of s1 (wealth) grid points 200

Js2 Number of s2 (income) states 3

Jp1 Number of p1 (rental rate) grid points 50

Jp2 Number of p2 (wage) grid points 70

N Sample size = number of p trajectories 256,512,1024,...

T Time truncation s.t. βT < 0.01 90

ε Convergence criterion on v̂π 0.001

ηini Initial learning rate 0.01

ηdecay Learning rate decay (exponential) 0.5
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Runtimes

• Runtime increases with sample size N

• GE problem only mildly more difficult than PE

Sample size N PE/GE Average converge epoch # Runs Average Runtime (sec)

256 GE 319.3 10 27.92

512 GE 304.3 10 40.39

1024 GE 357.6 10 81.02

2048 GE 384.8 10 160.08

512 PE 586.0 10 41.44

Note: all experiments were implemented on the A100 GPU on Google Colab
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Some simulated trajectories under the optimal policy
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Consumption policy function: single run
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Consumption policy function: multiple runs
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Larger sample size N ⇒ more precise estimate
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Smaller sample size N ⇒ noisier estimate
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Structural RL method recovers RE solutions
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RE solutions are obtained with a deep learning based method (DeepHAM).
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Non-trivial market clearing (Huggett)



Some simulated trajectories under the optimal policy
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Adding one lagged price pt−1 into state space
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HANK with forward-looking Phillips curve



HANK with forward-looking Phillips curve

Household block (similar to before): states s = (b, y) and prices p = (R,w)

policies = {c(s, p), n(s, p)} that maximize PDV of utility

Firm block: price setting⇒ forward-looking Phillips curve = added difficulty

Πt =
ε

θ

(
wt
zt
−m∗

)
+ E

[
R−1t+1

Yt+1
Yt
Πt+1

∣∣∣∣ It ], m∗ =
ε− 1
ε

Conventional approach: parameterize E[Πt+1|It ]⇒ complicated fixed-point
(e.g. Kase-Melosi-Rottner, Fernández-Villaverde et al)
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HANK with forward-looking Phillips curve

Household block (similar to before): states s = (b, y) and prices p = (R,w)

policies = {c(s, p), n(s, p)} that maximize PDV of utility

Firm block: price setting⇒ forward-looking Phillips curve = added difficulty

Our solution: solve firm price-setting problem using policy gradient method

J0 = max
{Pj,t}

E0

[ ∞∑
t=0

R−10→t

{
Profits

(
Pj,t
Pt
,
wt
zt
, Yt

)
−
θ

2

(
Pj,t − Pj,t−1
Pj,t−1

)2}]
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HANK with forward-looking Phillips curve

Household block (similar to before): states s = (b, y) and prices p = (R,w)

policies = {c(s, p), n(s, p)} that maximize PDV of utility

Firm block: price setting⇒ forward-looking Phillips curve = added difficulty

Or in terms of inflation Πt = (Pt − Pt−1)/Pt

J0 = max
{Πj,t}

E0

[ ∞∑
t=0

R−10→t

{
Profits

(
1 + Πj,t
1 + Πt

,
wt
zt
, Yt

)
−
θ

2
(Πj,t)

2

}]
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HANK: policy gradient method for both households & firms

Household block (similar to before): states s = (b, y) and prices p = (R,w)

policies = {c(s, p), n(s, p)} that maximize PDV of utility

Firm block: states z and prices p = (R,w)

policy = Π(z, p) that maximizes

JΠ = E0

[ ∞∑
t=0

R−10→t

{
Profits

(
1 + Π(zt , Rt , wt)

1 + Πt
,
wt
zt
, Yt

)
−
θ

2
(Π(zt , Rt , wt))

2

}]

Symmetric treatment of firms and households, update policies simultaneously

In practice: good convergence properties
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HANK: Household and firm policy functions
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HANK simulations
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Summary

Efficient and flexible global solution method for non-stationary HA models

Reinforcement learning about equilibrium prices (but not individual states)

• sidestep infinite-dimensional Master equation

• solve much lower-dimensional problem

Solves problems traditional methods struggle with

• non-trivial market clearing conditions

• HANK with forward-looking Phillips curve

• next: models of large crises, booms/busts
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In stationary world, lagged prices are enough for RE back

Recall Assumption 1: agents observe prices pt but not distribution Gt(s)

Important: Assumption 1 still consistent with rational expectations

Why? Wold representation theorem!

Step 1 (Wold): if pt-process is stationary, it has Wold representation = VMA(∞)

pt =

∞∑
j=0

cjεt−j , cj = some unknown coefficients

Step 2: if VMA(∞) is invertible, it can be expressed as a VAR(∞) and hence

pt+1 ∼ Tp(·|pt , pt−1, ...)

In practice, include finitely many lags

Assumption 2: extreme case with zero lags pt+1 ∼ Tp(·|pt)
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Key difficulty: equilibrium prices are not Markov

• Equilibrium prices satisfy back

pt = P
∗(gt , zt)

gt+1 = A
T
πt(zt)

gt

zt+1 ∼ Tz(·|zt)
• Difficulty: low-dimensional pt does not have Markov property...

• ... only extremely high-dimensional (gt , zt) does

• Dynamic programming can only handle Markov states⇒ Master equation

V (s,g, z) = max
c
u(c)+βE

[
V (s ′,g′, z ′)|s,g, z

]
s.t. s ′ ∼ Ts(·|s, c, P ∗(g, z))

• Without Markov transition prob’s: cannot even write Bellman equation!

• But what if there was a way to approximate value and policy functions
with pt process for which there are no Markov transition probabilities? 36



Brief primer on reinforcement learning



RL: learning value & policy functions in incompletely-known Markov decision

processes from experience (Monte Carlo sampling) a.k.a. “approximate DP”
Reinforcement Learning – see Sutton-Barto for great intro
• Another stochastic approximation method: reinforcement learning

Playing Atari with Deep Reinforcement Learning

Volodymyr Mnih Koray Kavukcuoglu David Silver Alex Graves Ioannis Antonoglou

Daan Wierstra Martin Riedmiller

DeepMind Technologies

{vlad,koray,david,alex.graves,ioannis,daan,martin.riedmiller} @ deepmind.com

Abstract

We present the first deep learning model to successfully learn control policies di-
rectly from high-dimensional sensory input using reinforcement learning. The
model is a convolutional neural network, trained with a variant of Q-learning,
whose input is raw pixels and whose output is a value function estimating future
rewards. We apply our method to seven Atari 2600 games from the Arcade Learn-
ing Environment, with no adjustment of the architecture or learning algorithm. We
find that it outperforms all previous approaches on six of the games and surpasses
a human expert on three of them.

1 Introduction

Learning to control agents directly from high-dimensional sensory inputs like vision and speech is
one of the long-standing challenges of reinforcement learning (RL). Most successful RL applica-
tions that operate on these domains have relied on hand-crafted features combined with linear value
functions or policy representations. Clearly, the performance of such systems heavily relies on the
quality of the feature representation.

Recent advances in deep learning have made it possible to extract high-level features from raw sen-
sory data, leading to breakthroughs in computer vision [11, 22, 16] and speech recognition [6, 7].
These methods utilise a range of neural network architectures, including convolutional networks,
multilayer perceptrons, restricted Boltzmann machines and recurrent neural networks, and have ex-
ploited both supervised and unsupervised learning. It seems natural to ask whether similar tech-
niques could also be beneficial for RL with sensory data.

However reinforcement learning presents several challenges from a deep learning perspective.
Firstly, most successful deep learning applications to date have required large amounts of hand-
labelled training data. RL algorithms, on the other hand, must be able to learn from a scalar reward
signal that is frequently sparse, noisy and delayed. The delay between actions and resulting rewards,
which can be thousands of timesteps long, seems particularly daunting when compared to the direct
association between inputs and targets found in supervised learning. Another issue is that most deep
learning algorithms assume the data samples to be independent, while in reinforcement learning one
typically encounters sequences of highly correlated states. Furthermore, in RL the data distribu-
tion changes as the algorithm learns new behaviours, which can be problematic for deep learning
methods that assume a fixed underlying distribution.

This paper demonstrates that a convolutional neural network can overcome these challenges to learn
successful control policies from raw video data in complex RL environments. The network is
trained with a variant of the Q-learning [26] algorithm, with stochastic gradient descent to update
the weights. To alleviate the problems of correlated data and non-stationary distributions, we use

1

Figure 1: Screen shots from five Atari 2600 Games: (Left-to-right) Pong, Breakout, Space Invaders,
Seaquest, Beam Rider

an experience replay mechanism [13] which randomly samples previous transitions, and thereby
smooths the training distribution over many past behaviors.

We apply our approach to a range of Atari 2600 games implemented in The Arcade Learning Envi-
ronment (ALE) [3]. Atari 2600 is a challenging RL testbed that presents agents with a high dimen-
sional visual input (210 × 160 RGB video at 60Hz) and a diverse and interesting set of tasks that
were designed to be difficult for humans players. Our goal is to create a single neural network agent
that is able to successfully learn to play as many of the games as possible. The network was not pro-
vided with any game-specific information or hand-designed visual features, and was not privy to the
internal state of the emulator; it learned from nothing but the video input, the reward and terminal
signals, and the set of possible actions—just as a human player would. Furthermore the network ar-
chitecture and all hyperparameters used for training were kept constant across the games. So far the
network has outperformed all previous RL algorithms on six of the seven games we have attempted
and surpassed an expert human player on three of them. Figure 1 provides sample screenshots from
five of the games used for training.

2 Background

We consider tasks in which an agent interacts with an environment E , in this case the Atari emulator,
in a sequence of actions, observations and rewards. At each time-step the agent selects an action
at from the set of legal game actions, A = {1, . . . ,K}. The action is passed to the emulator and
modifies its internal state and the game score. In general E may be stochastic. The emulator’s
internal state is not observed by the agent; instead it observes an image xt ∈ Rd from the emulator,
which is a vector of raw pixel values representing the current screen. In addition it receives a reward
rt representing the change in game score. Note that in general the game score may depend on the
whole prior sequence of actions and observations; feedback about an action may only be received
after many thousands of time-steps have elapsed.

Since the agent only observes images of the current screen, the task is partially observed and many
emulator states are perceptually aliased, i.e. it is impossible to fully understand the current situation
from only the current screen xt. We therefore consider sequences of actions and observations, st =
x1, a1, x2, ..., at−1, xt, and learn game strategies that depend upon these sequences. All sequences
in the emulator are assumed to terminate in a finite number of time-steps. This formalism gives
rise to a large but finite Markov decision process (MDP) in which each sequence is a distinct state.
As a result, we can apply standard reinforcement learning methods for MDPs, simply by using the
complete sequence st as the state representation at time t.

The goal of the agent is to interact with the emulator by selecting actions in a way that maximises
future rewards. We make the standard assumption that future rewards are discounted by a factor of
γ per time-step, and define the future discounted return at time t as Rt =

∑T
t′=t γ

t′−trt′ , where T
is the time-step at which the game terminates. We define the optimal action-value function Q∗(s, a)
as the maximum expected return achievable by following any strategy, after seeing some sequence
s and then taking some action a, Q∗(s, a) = maxπ E [Rt|st = s, at = a, π], where π is a policy
mapping sequences to actions (or distributions over actions).

The optimal action-value function obeys an important identity known as the Bellman equation. This
is based on the following intuition: if the optimal value Q∗(s′, a′) of the sequence s′ at the next
time-step was known for all possible actions a′, then the optimal strategy is to select the action a′

2
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Computing an expected value

Random variable x

How compute expected value E[x ]? Two approaches:

1. Exact: know probability distribution f (x)⇒ calculate

E[x ] =
∫
xf (x)dx

2. Monte Carlo: don’t know f but can sample {x1, x2, . . . , xN}

E[x ] ≈ x̄ =
1

N

N∑
i=1

xi

Or update incrementally (stochastic approximation method):

x̄k =
1

k

k∑
i=1

xi satisfies x̄k = x̄k−1 +
1

k
(xk − x̄k−1) ,

1

k
= “learning rate”
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Computing a value function

For now: eliminate actions and individual states

v0 = E

[ ∞∑
t=0

βtu(pt)

]
, pt = exogenous stochastic process

Two approaches:

1. Dynamic programming: pt Markov and know f (p
′|p)

v(p) = u(p) +

∫
v(p′)f (p′|p)dp′

2. Can also be extended to compute optimal policy: policy gradient method
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Computing a value function

For now: eliminate actions and individual states

v0 = E

[ ∞∑
t=0

βtu(pt)

]
, pt = exogenous stochastic process

Two approaches:

1. Dynamic programming: pt Markov and know f (p
′|p)

v(p) = u(p) +

∫
v(p′)f (p′|p)dp′

2. Monte Carlo: don’t know f but sample N trajectories
{
pit
}T
t=0

v0 ≈ v̂0 =
1

N

N∑
i=1

T∑
t=0

βtu(pit) or v̂ k0 = v̂
k−1
0 +

1

k

(
T∑
t=0

βtu(pkt )− v̂ k−10

)

Can also be extended to compute optimal policy: policy gradient method
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Computing a value function

For now: eliminate actions and individual states

v0 = E

[ ∞∑
t=0

βtu(pt)

]
, pt = exogenous stochastic process

Two approaches:

1. Dynamic programming: pt Markov and know f (p
′|p)

v(p) = u(p) +

∫
v(p′)f (p′|p)dp′

2. Monte Carlo: don’t know f but sample N trajectories
{
pit
}T
t=0

v0 ≈ v̂0 =
1

N

N∑
i=1

T∑
t=0

βtu(pit) or v̂ k0 = v̂
k−1
0 +

1

k

(
T∑
t=0

βtu(pkt )− v̂ k−10

)
Can also be extended to compute optimal policy: policy gradient method
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Computing a value function

For now: eliminate actions and individual states

v0 = E

[ ∞∑
t=0

βtu(pt)

]
, pt = exogenous stochastic process

Two approaches:

1. Dynamic programming: pt Markov and know f (p
′|p)

v(p) = u(p) +

∫
v(p′)f (p′|p)dp′

2. Temporal difference learning: N trajectories, update v incrementally

v̂ k(pkt ) = v̂
k−1(pkt ) +

1

k

([
n−1∑
τ=0

βτu(pkt+τ ) + β
nv̂ k−1(pkt+n)

]
− v̂ k−1(pkt )

)
Can also be extended to compute optimal policy: policy gradient method
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Agent vs Environment, Rollout of a Policy

RL distinguishes between agent and environment = everything outside of agent

In HA macro:

• agents = households and their policies

• environment = everything else, including market clearing etc

Related: rollout = agent interacting with environment under given policy

• take any (generally suboptimal) policy, run it forward in time

• how optimize policy is completely separate question (policy improvement)

This viewpoint will be important, in particular for non-trivial market clearing
back
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