Structural Reinforcement Learning for
Heterogeneous Agent Macroeconomics

Yucheng Yang* Chiyuan Wang*

Zurich Peking University
Andreas Schaab Benjamin Mollt
Berkeley LSE

*equal contribution Tcorresponding author

Universitat TUbingen

Heterogeneous agent models with aggregate risk

® Huge literature since Krusell-Smith and Den Haan from late 90s

e Key challenge: rational expectations + general equilibrium
= distribution = state variable in Bellman equation (“Master equation”)

® true even though households/firms only care about prices

® intuition: equilibrium prices are not Markov, only the distribution is
= forecast distributions to forecast prices

® Despite recent impressive advances to solve it directly, still lack of efficient
global solution methods for advanced HA models with aggregate risk

¢ This paper: sidestep master egn with structural reinforcement learning

Sidestep Master egn using structural reinforcement learning

RL = learning value & policy functions in Markov decision processes from
Monte Carlo simulation

Here: RL about equilibrium prices but not individual states = “Structural RL”
Outcome: efficient & flexible global solution method for HA models w agg risk
® solves problems traditional methods struggle with:
1. non-trivial market clearing (Huggett w agg. risk) ~ 1 min on Google Colab
2. HANK with forward-looking Phillips curve ~ 3 min
How does it work?
¢ in contrast to dynamic programming, RL can handle non-Markov states
e replace dist’n with low-dim. prices in state space, grid-based not DNNs

e cfficient market clearing using policy functions (= demand curves)

Our structural RL approach in a nutshell

e Step 1: parameterize policy function in low-dim state (s, z, p):

me(s,z,p) = {ca(s, 2, p), by(s, z, p)},
with grid values as unknown parameters 6. Do NOT parameterize price functions.

e Step 2: GE simulation given mg. For any 6, compute average lifetime utility

1 N T
v(6) ~ 1 > " Btulcalst 2. pp)

n=1 t=0
along N simulated equilibrium paths with very large T.

e Step 3: structural policy gradient. Update 6 by stochastic gradient ascent on
v(0), and repeat Step 2.

Restricted perceptions equilibrium. Results so far very close to RE.

Literature and contribution

Global solution methods for HA models with aggregate risk
Fernandez-Villaverde et al, Han-Yang-E, Maliar-Maliar-Winant, Azinovic-Gaegauf-Scheidegger, Schaab, Gu et al...

® sidestep Master equation rather than “taming curse of dimensionality”
¢ Han-Yang-E DeepHAM = also RL-inspired
Global solution with bounded rationality krusei-Smith, Den Haan, ...
e similarity: low-dim. state space; difference: no perceived law of motion
Adaptive (least squares) learning eray, Marcet-Sargent, Evans-Honkapohja, Jacobson, Giusto, ...
¢ |ike RL = stochastic approximation method
Self-confirming equilibrium
e agents form price exp. from data generated by economy where they live
® but expectations incorrect for off-equilibrium (or rare) price realizations
e restricted perceptions equilibrium

“Sequence space” Auclert- Bardéczy-Rognlie-Straub
® global solution in sequence space (low-dim. prices) via Monte Carlo

Plan

1. HA Models: Setup
2. The RL Approach to HA macro without the Master equation
3. Computational experiments: Krusell-Smith and Huggett with agg risk

4. Forward looking Phillips curve: HANK with aggregate shocks.

HA Models: Setup

Textbook HA model — Huggett (1993) with agg. risk

Continuum of agents i/, heterog. in (b; ¢, i ¢), ¥i.+ = id. risk, agg. shock z

Households choose consumption ¢; ; to maximize

Cit

o0
vio = max [Eg Zﬁtu(c,-,t) subject to
t=0

Cit+ bit+1 = Rebit +Vieze, Yieg1 ~TyClyie), bity1 > b

State of the economy: distribution G:(b, y) and z;. Prices: R:.

Market clearing: interest rates R such that
/b’t(b,y) dGe(b,y) =B, alt

Note: agent problem depends on G; only through low-dim. prices (R;)

General setup of HA models

e Continuum of agents /, heterog. in s € R”, e.g. wealth, labor prod’ty
e State of the economy: distribution G;(s) and z; € R¥. Prices p; € R¥.
® Agents choose consumption ¢; ; to maximize
oo
Viog= ?]a); Eo Zﬁtu(q,t) subject to

cit t=0
sit+1 ~ Ts(:|si ¢, Cit, pr, z¢) = budget constraint + income process

¢ | ow-dimensional equilibrium price functionals
pr = P*(Ge, z¢), Zty1 ~ Tz(-| z¢)
P* can be implicit e.g. Huggett, or analytical, e.g. Krusell-Smith 98.

Note: agent problem depends on G; only through low-dim. price functionals

Discretized representation

Discretize individual state s € {s1, ..., sy} with J = J; x ... x J,

Value function, distribution, etc are J-dimensional vectors
vi(s1) 9e(s1)
Vi = : . gt = :
vi(sy) 9¢(s))

Consumption policy ¢ = (s, z) = J x J transition matrix for s

Ar.(z) Withentries Pr(syls;) = Ts(spls;, me(s), zt), pt. 2¢)

High-dimensional state (g;, z:) is Markov:

9er1 = AL, 09t Zer1 ~ To(]2t)

Low-dim equilibrium prices p; = P*(g¢, z+): not Markov

Key difficulty: equilibrium prices are not Markov

® | ow-dim equilibrium prices p; = P*(g¢, z+): not Markov

... only extremely high-dimensional (g¢, z¢) is

Dynamic programming can only handle Markov states = Master equation

V(s.9.2) = maxu(c)+fE V(s'.g'.2)[s,9.2] st s’ ~Ts(|s c, P*(g,2))

Without Markov transition prob’s: cannot even write Bellman equation!

Our solution: use RL to approximate value/policy functions with low-dim
non-Markov state variables

Sidestepping the Master Equation
via Structural RL

What is reinforcement learning? A simple example

RL = learning value & policy functions from Monte Carlo

Example: compute value function (eliminate actions & individual states for now)

o0
vw=FE [Z ﬁtu(pt)] . pr = exogenous stochastic process
=0

Two approaches:

1. Dynamic programming: p; Markov and know 7 (p’|p)

v(p) = u(p) + B / V(o) F(F|p)dY

What is reinforcement learning? A simple example

RL = learning value & policy functions from Monte Carlo
Example: compute value function (eliminate actions & individual states for now)
(o @]
vw=E [Z Btu(pt)] . ps = exogenous stochastic process

Two approaches:

1. Dynamic programming: p: Markov and know f(p’|p)

v(p) = U(p)+ﬁ/V(p)f(p |p)dp’
2. RL/Monte Carlo: don’t know f but sample N trajectories { pt} o

o t= LSS ue) o oo e (Sotuet) - i)
t=0

What is reinforcement learning? A simple example

RL = learning value & policy functions from Monte Carlo

Example: compute value function (eliminate actions & individual states for now)

v =E [Z Btu(pt)] ., pt = exogenous stochastic process
t=0
Two approaches:
1. Dynamic programming: p: Markov and know f(p’|p)
v(p) = u(p) +ﬁ/V(p’)f(p’|p)dp’
2. RL/Monte Carlo: don’t know f but sample N trajectories { pj;}tT:O

N T T
- 1 , ~ e 1 ke
o Vo= ZZBtu(p’t) or =yt + p <Zﬁtu(pf) — V¥ 1)
t=0

i=1 t=0
Can also be extended to compute optimal policy: policy gradient method

Sidestepping the Master Equation via Structural RL

Recall: states s = (b, y), prices p = (R), agents choose ¢; + to maximize

e t=0

Vio = ?gaif]E lZﬁtu(q,t)] st sier1 ~ Ts(lsie. Gt Pea 2e), P = P (Geoze) (1)
Assumption 1: agents observe prices p; but not distribution G(s)

® p; can include moments of G, say GDP, as long as low-dimensional

Similarity to standard RL: don’t know transition prob. of prices p;

Difference to standard RL: know “local environment” 7¢ and v (Han-Yang-E)

Assumption 2: consumption policy m does not condition on price histories
Ci,t = T(Sj,¢. P, Zt)
® To do: keep track of price histories, e.g. hlags or RNN

RL: optimize m(s; ¢, pr, z+) to solve (1) on the simulated paths.

Restricted perceptions equilibrium

A pair of mappings (7%, P*) constitutes a restricted perceptions equilibrium if:

1.

Optimality. For any price sequence {p;} generated by p; = P*(g:, z:) and
exogenous sequence {z;}, agents choose 7*(s, p, z) to solve:

max E
™

> Btu(m(se. pt, Zt))] ,

t=0
subject to the individual budget constraint and state transition equations.

. Market clearing. For every period t, all markets clear.

. Consistency. The prices that agents use to form expectations coincide

with the prices in the simulated economy when all agents follow 7*:

pt = P*(9¢, zt), ge+1 = AI*(pt,Zt)gt

Simulating the economy given policy ¢ = w(s, p, z)

For given (suboptimal) policy 7 (s, p, z), can simulate economy forward in time
® important: very cheap computationally with JAX on GPUs

Recall: discrete s = vectors w(p, z), g, sparse transition matrix Ay,)
For given policy w(p, z) and (go, Z0), economy evolves as:

p: = P*(9¢, zt)
gi+1 = Al(pt,zt)gt

Zry1 ~ T2(¢|z¢)

Efficient handling of non-trivial market clearing

Si(p,z) = B, Si(p, z) = /b’(s, p, z)dG:(s) = agg. saving supply

Key: integrate policies b/ (s, p, z) = aggregate saving on the price grid S(p, z¢)

= p; solves Si(p:, z:) =b'(pr, z:)"g: = B

0.06{ —e— z=0.97,r=0.031
—e— 2z=0.99,r=0.027

z=1.00,r=0.024
—e— z=1.01,r=0.021
—e— z=1.03,r=0.017
—e— z=1.05,r=0.017
--~ Total assets B

Interest rate r
e e
(= (=]
P (5]

e
=
@

o
o
]

-0.6 -04 -0.2 0.0 0.2 0.4 0.6 0.8
Aggregate saving S(r, z)

Market clearing is part of environment, not another loop!

Using knowledge of local environment

Value function for given policy (s, p, z)

Ve(s,p.z) =E ZﬁtU(W(S/,t, P, Zt))|Sio =S, Po = P, 20 = Z] (%)
t=0

Partition state space (s, p, z) into known dynamics and unknown dynamics
® use transition matrix A to keep track of all s-transitions

® expectation [E only over price trajectories {p:}32, and {z:}32,

Write v (s, p, z) in () as vector vx(p, z):

o0

Z,BtAO—nUt

t=0

vr(p,z)=E [UO + BAgu; +,32A0A1UQ +...|p, Z] =E

.

where u; = Ll(‘ll'(pt, Zt)) and A; = Aﬂ'(Pr,Zt) and Agr = Ag---Arq

Summary: problem to be solved

Find optimal policy 7 (s, p, z) or w(p, z) that maximizes

v (p, 2) Zﬁ Arostu(m(pe, z¢)) | P

t=0
taking as given evolution of equilibrium prices p; (agent does not use P¥)

Po, ZOZP,Z]

pt — P*(gt, Zt)v ngr]. — A;(Pt,zt)gt' Zf+1 ~ 7;(|Zt), t = O, 1,

with (go, 20) given, ™ = m in egm, and Az o+ = A A

po.Z0) " " m(Pt—1.2t-1)

Key observation:
e State of economy = (g, z) = very high-dimensional

But state in value/policy functions = (s, p, z) = very low-dimensional!
® No perceived law of motion, inner loop / outer loop (like in Krusell-Smith)

GE problem only mildly more difficult than PE

Value

01 o N ,»“‘L -

: LA [
1 % EIPZaR ANl b\ SR
Af A w : \/Nﬂ\ NG (/ Yy W«W W !

RL policy gradient method for maximizing v,

Find optimal policy 7 (p, z) that maximizes estimate of E, <y, z~v. [Vx (Po. 20)]:

1 N T o
v7r - N Z [Z,BtAW,O—MU(W(pIp Zé))]

i=1 Lt=0
with N price trajectories p. sampled from interacting with environment (rollouts):
= P"(9¢,2t), 941 = Af-l;(pr,zf)gt, Zer1 ~ T2(Hze), t=0.1,...

with gg ~ ¥g4(-), zo ~ P,(-) and with * = in equilibrium

log TFP (2) Aggregate capital k Rental rate r Wage w

091+

6% w0 75 1o s 10 1 20 G 25 50 75 100 135 150 175 200 G 25 50 75 100 135 150 175 200 G 25 50 75 100 125 150 175 200
Time Time Time

RL policy gradient method for maximizing v,

Find optimal policy 7 (p, z) that maximizes estimate of E, <y, z~v. [Vx (Po. 20)]:

N

T

~ 1 . 2

Vﬂ' = N Zl t oBtAﬂ'yo—)tu("r(p’t’ Zé))
1= =

with N price trajectories pi sampled from interacting with environment (rollouts):
pr =P (9, 2¢), Grt1 = A;(Pt,Zt)gtv Zep1 ~ T2(ze), t=0.1,...
with gg ~ 9¥4(-), 20 ~ ¥, (-) and with & = = in equilibrium

In practice, maximize scalar objective using gradient ascent:
J
L(8) =djVr = Y do(s))Vx(s). do(s) = uniform dist. over s
j=1

policy either grid based 8 = [w(p1, z1)., ..., ®(pJ, zx)] or neural net 7(s, p, z; 0)

¢ low dim. = grid-based method works well so far, no need for neural nets!

Computational graph for construction of v,

: &

(s, Po, 20) m(s,p1,21) (s, pr_1,27-1) n(s, pr, 21)
JR B R JR I B , L I N
\ S0 H Do ‘ ’ 31 H b1 ‘ ’ ST-1 H Pr-1 ‘ ‘ ST H pr ‘
4 _J{) X) \ e) \ N J

P*() \ P*() \ P*() P*)

/ 91,21 %A "—P{"QT—IZTI}»A(‘” ﬂ gr; 2T \‘
7FT12T1

E

[/ St \FA

7(po, zo)

m(p1,21)
o

Computational experiments

Runtimes

e Efficient implementation in JAX for GPUs, run on Google Colab

e Stochastic algorithm: present averages over multiple runs

Model Average converge epoch # Runs Average Runtime (sec)
Krusell-Smith 438.4 10 56.55
Huggett with agg. shocks 480.6 10 75.29
HANK with agg. shocks 496.5 10 199.53
Partial equilibrium (Huggett) 289.3 10 39.49

Note: all experiments were implemented on the A100 GPU on Google Colab

Krusell-Smith model

Computational experiments: Krusell-Smith model

Parameter | Description Value
a Capital share 0.36
o Capital depreciation rate 0.08
¥ Discount factor 0.95
o Coefficient of relative risk aversion 3
o Persistence of AR(1) for z; (log TFP) 0.9
Vg Volatility of AR(1) for z: (log TFP) 0.03
Hyperparameter | Description Value
Js, Number of s; (wealth) grid points 200
Js, Number of s, (income) states 3
I Number of p; (rental rate) grid points 50
Ip, Number of p, (wage) grid points 70
N Sample size = number of p trajectories | 256,512,1024,...
T Time truncation s.t. 87 < 0.01 90
€ Convergence criterion on Vi, 0.001
Mini Initial learning rate 0.01
Ndecay Learning rate decay (exponential) 0.5

Runtimes

¢ Runtime increases with sample size N

® GE problem only mildly more difficult than PE

Sample size N PE/GE Average converge epoch # Runs Average Runtime (sec)
256 GE 319.3 10 27.92
512 GE 304.3 10 40.39
1024 GE 357.6 10 81.02
2048 GE 384.8 10 160.08
512 PE 586.0 10 41.44

Note: all experiments were implemented on the A100 GPU on Google Colab

Some simulated trajectories under the optimal policy

log TFP(2) Aggregate capital k Aggregate consumption C
1.8
02 70
17
o1 65
: i 16
‘ \! 6.0
Wi A “ 15 /\
0.0 i W \V‘A 55 ~ : \l‘\
/U 5.0t 14 V,//
\
-0.1 V
w W 45 13 “1/\
o2 4.0 12
35 11
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
Time Time Time
Rental rate r Wage w Aggregate ion C vs log TFP z
18 EPR
0.08 15 o
o117
=
0.07 14 216
2
1.3 g
0.06 \ Z15
\ 1.2 A ¥ g
0.05 ’ ' l Y @14
1.1 kel N
l M] 213
0.04 /\‘ 10 i S
J »
<iz2f
0.03 0.9 .
'
1.1
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200 -0.2 -0.1 01 02

0.0
Time Time log TFP z

Consumption policy function: single run

Nsample =512

3.0
-—- y=0.55,r=0.049, w=1.14
------ y=1.00,r=0.049,w=1.14 s
25 y=1.82,r=0.049,w=1.14 el
© st
o i
S 2.01 KT
e e
o ‘_‘.:;,’
= Tale
2 Rt
g 1.51 eI
o LT
&) e
e
-
1.0/
/
0.5 " ; . . :
0 5 10 15 20 25 30

Wealth b

Consumption policy function: multiple runs

Consumption ¢

3.0

N
o

N
=)

[N
ol

[
o

0.5
0

Nsample =512

—— y=0.55,r=0.049,w=1.14
—— y=1.00,r=0.049, w=1.14
y=1.82,r=0.049,w=1.14

5 10 15 20 25
Wealth b

30

Larger sample size N = more precise estimate

3.0

Consumption ¢
N
(€]

[
o

0.5
0

Nsample = 2048

N
=)

[N
ol

—— y=0.55,r=0.049,w=1.14
—— y=1.00,r=0.049, w=1.14
y=1.82,r=0.049,w=1.14

5 10 15 20 25
Wealth b

30

Smaller sample size N =- noisier estimate

3.0

Consumption ¢
N
(€]

[
o

0.5
0

Nsample =24

N
=)

[N
ol

—— y=0.55,r=0.049,w=1.14
—— y=1.00,r=0.049, w=1.14
y=1.82,r=0.049,w=1.14

5 10 15 20 25
Wealth b

30

Structural RL method recovers RE solutions

42
O 41
g «
g 2. o
=]
g 2,40
2 «
I
] S
g2
2 39
© o
&
=3 =
€ 2. >
=3 <38
=3
<
37
0 200 400 600 800 1000 0 200 400 600 800 1000
Time Time

RE solutions are obtained with a deep learning based method (DeepHAM).

27

Non-trivial market clearing (Huggett)

Some simulated trajectories under the optimal policy

2 0.04] — Traiectory 1 —— Trajectory 1
041 — Trajectory 2 —— Trajectory 2
2.25 Trajectory 3 1.06 Trajectory 3
N u ©
2.00 g 002 £ g |
: | Y !
: Eioe v
s 4 3
2 2 0.00 i 2
& 2 2
8 H
E'150 g 812 [
3 g 2
£125 B 002 s
S < g
1.00 g { g 100 |
0.04 <
0.75
0.98
0.
0 5 10 15 20 25 3 0 20 10 60 80 100 0 20 10 60
Wealth b Time Time
— Trajectory 1 1.50.5] — Trajectory 1
0.03501 — Trajectory 2 —— Trajectory 2
Trajectory 3 Trajectory 3
0.0325 . 1265 Total assets 8
«
+ 0.0300 A < o
2 | 2 £
£0.0275 [ha]
2 % s
e o
5 00200 \ g 0.03 ES
]] £
= 0.0225 = 2
0.02 <
0.0200 \ :
0.0175
0.01
0 20 40 60 80 100 -0.6 -04 -02 00 02 04 06 08 0 20 40 60
Time Aggregate saving 5(r, 2) Time

Adding one lagged price p;_; into state space

Consumption ¢

onsumption ¢

¢

Consumption ¢

52=0.55,2.=0.982, p, = 0.029 52=0.55.2
— Oy current price 225§ — only current price 225
pi-1=0027 pi-=0023
pi1=0029 2,000 o pic 2.00
pi-1=0031 .
o175 175
H _ H
2150 £ 150
g g
3125 G125
© 100 /// © 100
0751
1 075
0501 050
3 5 0 15 %5 3 3 5 0 15 %5 3 o 5 0 15 PO
Wealth s, Wealth 5, Wealth 5,
5,=1.00, 2 52=1.00,2,=0.998, p = 0.025 52=1.00, 2, =1.019, p; = 0.020
— Only curront price — Only curront prce — Only cutront prce
- 224 o 22
~ pi-3=0025
20{ pii=0027 20{ poi=o02

Consumption ¢

Consumption ¢

14 14
12
. 12
7 Lo 1o
L T N R I B LB B R R R) I B R R R)
Wealth s, Wealth s, Wealth s,
52=182,2,=0.982,p; = 52=1.82,2=0.998,p = 52=1.82,2,=1.019, p, = 0.020
— Only current price: 24— only cureent pice - 241 — only current price
0.027 Pr-1=0.023 “ Pr-1=0.018
22 P 22 Pr-1=0.020
o s
o 20 w20
g g
g Zis
g H
ge s
8., §
p 11
y 12
4 12

HANK with forward-looking Phillips curve

HANK with forward-looking Phillips curve

Household block (similar to before): states s = (b, y) and prices p = (R, w)
policies = {c(s, p), n(s, p)} that maximize PDV of utility

Firm block: price setting = forward-looking Phillips curve = added difficulty
€ Y
Me=~ (Wt — m*> +E {Rtjl ijlnm

Conventional approach: parameterize E[,1|Z:] = complicated fixed-point
(e.g. Kase-Melosi-Rottner, Fernandez-Villaverde et al)

e—1
€

Z] m* =

HANK with forward-looking Phillips curve

Household block (similar to before): states s = (b, y) and prices p = (R, w)
policies = {c(s, p), n(s, p)} that maximize PDV of utility
Firm block: price setting = forward-looking Phillips curve = added difficulty

Our solution: solve firm price-setting problem using policy gradient method

> P ot Wt 0 Pj,t - 'Dj,t—l 2

Jo = max Eo
jf

HANK with forward-looking Phillips curve

Household block (similar to before): states s = (b, y) and prices p = (R, w)
policies = {c(s, p), n(s, p)} that maximize PDV of utility
Firm block: price setting = forward-looking Phillips curve = added difficulty

Or in terms of inflation My = (Pr — Pr—1) /Pt

> _ . 1 + l—l-t Wt 0 2
_ E 1 J,)
Jo = Pljla);]EO l RO—)t {Proﬂts < 1T |_|t , Z, Yt) — 5 (I_ljyt) }]

ot t=0

HANK: policy gradient method for both households & firms

Household block (similar to before): states s = (b, y) and prices p = (R, w)
policies = {c(s, p), n(s, p)} that maximize PDV of utility
Firm block: states z and prices p = (R, w)

policy = IM(z, p) that maximizes

> 1+ 1z, Ry, 0
Jn =Eo [Z Ra_lng {PrOfi’[S < + (Zt : Wt), %, Yt) - 5 (H(Zt, Ry, Wt))Q}]
t=0

1+|_|t Zt

Symmetric treatment of firms and households, update policies simultaneously

In practice: good convergence properties

HANK: Household and firm policy functions

v ES

Consumption ¢
o

Nsampie = 512

Nsampie = 512

=0.55,p; =0.026,p, = 0.88

1.00,p; =0.026,p; =

.82,py=0.026,p, =0.88

88

—— 5;=0.55,p; =0.026,p; = 0.88
00, p1 =0.026, p, = 0.88
=1.82,p, =0.026,p, = 0.88

— 5=

I

Labor supply n
o =
® o

e
>

e
=

5 10 15

20

Wealth s;

Inflation N

-0.01

—-0.02

25 30 35 5 10 15

20 25 30 35 40
Wealth s;

Nsampie = 512

-0.2 -0.1

HANK simulations

- 2 - g
te = tE =
23 g8
EE EE
| 8] e
° =
° 2
2 8 =
z ; §
7 ©
3 = £
== E o
g = E &)
2 = g
=0 3]
= 2
L=
= =
B3 S g] g g
2 3 S22 3 2 2 2
s S S 2 2 7T TS
,l o g - 1
= b e b
B I p— E $3
EE — - EE
. - 8 . 2
i = = i
o MV
° I
@ 1= < o =
[[— E @
gl <o < S
ST . N 3 =]
o] = =
= i S <
5 = | = ?
= = |
—_ J— -7 E=
[= —
3 3 3
H g g I
> =} =2 > a < @© <
s S < S S 9 Q ® @
7 2222 ¢2 22 :2
- g -~ 2
< = S <
gE | = el gt .
] I
EE [y BE
) = 2 :]
[ﬂw e S S of |
= S8
§ = 2 =
E e 8 m 2
o Lt ©
- Alhd.f g 2 <
B f £ 8
& T °
o 2
o = g 8
g o 2 g
= [S
=T g
s = ps
Fam s < =
1= =g o
- S /{M /Mn\ —
3 S 3 S 3 8 3 s 3
77T z 2 2 2

Time

Time

Time

33

Summary

Efficient and flexible global solution method for non-stationary HA models

Reinforcement learning about equilibrium prices (but not individual states)

CHARLES P. KINDLEBERGER'S

¢ sidestep infinite-dimensional Master equation MANIAS, PANICS,

, . AND CRASHES
¢ solve much lower-dimensional problem AHISTORY OF FINANCIAL CRISES

Solves problems traditional methods struggle with
® non-trivial market clearing conditions
o HANK with forward-looking Phillips curve

® next: models of large crises, booms/busts

Thanks!

In stationary world, lagged prices are enough for RE

Recall Assumption 1: agents observe prices p; but not distribution G¢(s)
Important: Assumption 1 still consistent with rational expectations
Why? Wold representation theorem!

Step 1 (Wold): if ps-process is stationary, it has Wold representation = VMA(co)

o0
pt =Y _ Gee—j, ¢ =some unknown coefficients
Jj=0

Step 2: if VMA(xo) is invertible, it can be expressed as a VAR(oo) and hence
Pt+1 ~ 7?)('|Pt. Pt—1.-..)

In practice, include finitely many lags

Assumption 2: extreme case with zero lags pry1 ~ Tp(:|pt)

Key difficulty: equilibrium prices are not Markov

® Equilibrium prices satisfy
pt = P*(9t, zt)
gt4+1 = A;lr—t(zt)gt

Zee1 ~ T2(+|z¢)

Difficulty: low-dimensional p; does not have Markov property...

e ... only extremely high-dimensional (g;, z;) does

Dynamic programming can only handle Markov states = Master equation
V(s,9,z) = maxu(c)+BE [V(s', g, 2')[s, g, z] st. s'~Ts(:|s, c, P*(g,2))
C

Without Markov transition prob’s: cannot even write Bellman equation!

But what if there was a way to approximate value and policy functions
with p; process for which there are no Markov transition probabilities?

Brief primer on reinforcement learning

RL: learning value & policy functions in incompletely-known Markov decision
processes from experience (Monte Carlo sampling) a.k.a. “approximate DP”

Playing Atari with Deep Reinforcement Learning

Volodymyr Mnih ~ Koray Kavukcuoglu David Silver ~ Alex Graves Ioannis Antonoglou
Daan Wierstra Martin Riedmiller

DeepMind Technologies

{0: AlphaGo Lee Sedol
D LZ #/.&
s O

Computing an expected value

Random variable x

How compute expected value E[x]? Two approaches:

1. Exact: know probability distribution f(x) = calculate

E[x] = /Xf(x)dx

2. Monte Carlo: don’t know f but can sample {x1,%x2,..., Xy}

E[x] ~ =N ZX,

Or update incrementally (stochastic approxmatlon method):
a 1 1
k=1 le,- satisfies X, = Xi—1 + P (X — Xk—1) , = “learning rate”
1=

Computing a value function

For now: eliminate actions and individual states
(o]
vw=E [Z Btu(pt)] , Pt = exogenous stochastic process
t=0

Two approaches:

1. Dynamic programming: p; Markov and know f(p’|p)

v(p) = U(p)+/V(p’)f(p’|p)dp’

Computing a value function

For now: eliminate actions and individual states
(@)
vw=E [Z 6tu(pt)] . ps = exogenous stochastic process

Two approaches:

1. Dynamic programming: p; Markov and know f(p’|p)

v(p) = U(p)+/V(p’)f(p’|p)dp’

2. Monte Carlo: don’t know f but sample N trajectories {pg}f_o

Z or VE=v 4 <Zﬁt ‘)

Computing a value function

For now: eliminate actions and individual states
(@)
vw=E [Z 6tu(pt)] . ps = exogenous stochastic process

Two approaches:

1. Dynamic programming: p; Markov and know f(p’|p)
v(p) = u(p) + / v(p)f(p'lp)dp’
2. Monte Carlo: don’t know f but sample N trajectories {pg}tho

¢
. e~ 1 ke
o= 53S0l o 3= (St o)
t=0

=1 t=0
Can also be extended to compute optimal policy: policy gradient method

Computing a value function

For now: eliminate actions and individual states
o
vw=E [Z Btu(pt)] , Pt = exogenous stochastic process

Two approaches:

1. Dynamic programming: p; Markov and know f(p’|p)
v(p) = u(p) + / v(p")f(p'|p)dp’

2. Temporal difference learning: N trajectories, update v incrementally

() = PP + © (

n—1
ZﬁTU(PHT)"‘ﬁnAk 1(pt+n)] kl(Pf))

Can also be extended to compute optimal policy: policy gradient method

Agent vs Environment, Rollout of a Policy

RL distinguishes between agent and environment = everything outside of agent
In HA macro:
® agents = households and their policies

® environment = everything else, including market clearing etc

Related: rollout = agent interacting with environment under given policy
¢ take any (generally suboptimal) policy, run it forward in time

® how optimize policy is completely separate question (policy improvement)

This viewpoint will be important, in particular for non-trivial market clearing

