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Introduction

• Many economic models involve non-convex optimization problems.

• Examples: private information models ⇒ nonconvex incentive compatibility constraints.

• Mathematically challenging to characterize, numerically difficult to solve.

• Lottery/Randomization/Mixed Strategy solutions to non-convex economies (Myerson,
1982; Prescott & Townsend, 1984; Arnott & Stiglitz, 1988):

• Planner & agent choose probability distribution of action/consumption: convex problem in

the probability space.

• May increase the value of the objective function.

• Real world correspondence: random audit, lottery in social programs, etc.

• Main difficulty for lottery problems: linear programming in high dimensional space.

• This paper: a new Lagrangian iteration algorithm to solve for optimal lotteries as

weighted average of deterministic solutions. 2



This paper

• A new Lagrangian iteration algorithm to efficiently solve for optimal lotteries.

1. Bridge pure strategy and lottery systems through Lagrangian iteration.

2. Lottery solution is weighted average of unconstrained deterministic solutions along iteration.

• Theoretical guarantee: correctness and convergence (sub-gradient descent).

• Complexity estimate: orders of magnitude better than the linear programming approach.

• Applications: (1) Moral hazard, (2) Optimal tax with multi-dimensional hidden types.

• From applications: (1) much faster and memory-saving than conventional methods; (2)

new insights when the randomized tax scheme is welfare improving.

Literature
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Lagrangian Iteration Method



Illustrative Example: Moral Hazard Problem

• A continuum of representative agents take unobserved action a ∈ A, which affects

output q ∈ Q via p(q|a). A and Q are finite sets. Agent consumption c ∈ C (compact).

• Deterministic solution: the planner choose allocation c(q) and recommend the agent to

choose a, to solve

max
a,c(q)

∑
q

p(q|a)u(c(q), a), (1)

subject to resource constraint & incentive compatibility constraint:∑
q

p(q|a)(c(q)− q) ≤ 0;∑
q

p(q|a)u(c(q), a) ≥
∑
q

p(q|â)u(c(q), â), ∀â ∈ A
(2)

• Problem can be highly non-convex.
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Lottery Solution to Moral Hazard Problem

• Lottery problem: planner chooses x ∈ P(A× C |Q|), x = x(a, c(q1), · · · , c(q|Q|)) to:

max
∑
a∈A

∫
c∈C|Q|

x(a, dc)
∑
q∈Q

p(q|a)u(c(q), a),

s.t.
∑
a∈A

∫
c∈C|Q|

x(a, dc)
∑
q∈Q

p(q|a)(c(q)− q) ≤ 0∫
c∈C|Q|

x(a, dc)
∑
q

p(q|a)u(c(q), a) ≥
∫
c∈C|Q|

x(a, dc)
∑
q

p(q|â)u(c(q), â), ∀(a, â) ∈ A×A.

(3)

• This problem: linear in the probability space P(A× C |Q|) ⇒ directly solve with

large-scale linear programming tools.

• Challenge: dimension of P(A× C |Q|) is very high even for simple problem!

Our Idea: construct lottery solution as weighted average of deterministic solutions.
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New Method: Lagrangian Iteration for the Lottery Problem

Initial guess of: λ0, γ0. In the k-th iteration,

• Given λk, γk, update optimal allocation (ak, ck) = argmaxa,c L(a, c;λk, γk).

• Update Lagrangian multipliers λk and γk, with learning rate µk, e.g. µk = 1/k:

λk+1 = max

{
λk + µk

∑
q

p(q|ak)(ck(q)− q), 0

}
.

γk+1
â,ak

= max

{
γkâ,ak + µk

[∑
q

p(q|â)u(ck(q), â)− p(q|ak)u(ck(q), ak)

]
, 0

}
∀â

Intuition: Update Lagrangian multipliers according to how “close” the current allocation

satisfies the inequality constraints ⇒ sub-gradient descent.

Final lottery solution:
xN =

1∑N
k=1 µ

k

N∑
k=1

µkδ(ak,ck).
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Calibration (Prescott, 1998)

• u(a, c) =
√
c+ 0.8

√
2− a.

• Consumption set: C = [0, 2], output set Q = {0.5, 1.5}, action set:

A = 0.05 : ∆a : 1.95, with ∆a = 0.025. Output distribution as function of action:

p(q = 1.5 | a) =


1−(1−a)0.2

2 , if a < 1,
1+(a−1)0.2

2 , if a ≥ 1.

• Solution (Prescott, 1998):
π(a = 0.05) = 0.0924, π(a = 1.075) = 0.9076

π(c = 1.20 | q = 0.5, a = 0.05) = 1, π(c = 1.19 | q = 1.5, a = 0.05) = 1.

π(c = 0.54 | q = 0.5, a = 1.075) = 0.5311, π(c = 0.55 | q = 0.5, a = 1.075) = 0.4689.

π(c = 1.40 | q = 1.5, a = 1.075) = 1. 7



Lagrangian multiplier λk, allocation ak, ck, dual value V (λk, γk) along iteration
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Theoretical Framework



General Framework

Deterministic problem with a continuum of agents, action a ∈ A (finite), consumption

c ∈ C (compact), payoff function f :

max
a∈A, c∈C

f(a, c),

s.t. resource constraints gi(a, c) ≤ 0 i ∈ {1, . . . ,m},
incentive constraints hj(a, c) ≤ 0 j ∈ {1, . . . , ℓ},

(4)

Lottery problem with probability x(a, dc) ∈ P(A× C):

max
x∈P(A×C)

∑
a∈A

∫
c∈C

f(a, c)x(a, dc),

s.t.
∑
a∈A

∫
c∈C

gi(a, c)x(a, dc) ≤ 0 ∀i ∈ {1, . . . ,m},∫
c∈C

hj(a, c)x(a, dc) ≤ 0 ∀a ∈ A, j ∈ {1, . . . , ℓ}.

(5)
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Lagrangian Iteration: General Setup

Given λ1i (i ∈ {1, · · · ,m}), γ1j,a(a ∈ A, j ∈ {1, · · · , ℓ}), µk ∈ R+, N ∈ N+. For k = 1 : N ,

Step 1. Solve the Lagrangian problem.

(ak, ck) ∈ arg max
a∈A,c∈C

L(a, c;λk, γk).

Step 2. Update the Lagrangian multipliers.

λk+1
i = max{λki + µkgi(a

k, ck), 0}, ∀i ∈ {1, · · · , n}.

γk+1
j,ak

= max{γkj,ak + µkhj(a
k, ck), 0}, ∀j ∈ {1, · · · , ℓ}.

γk+1
j,a = γkj,a, ∀j ∈ {1, · · · , ℓ} , a ̸= ak.

Step 3. Construct the lottery solution with δ(ak,ck) as δ−measure at the point (ak, ck).

xN :=
1∑N

k=1 µ
k

N∑
k=1

µkδ(ak,ck),
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Main Theorem

Theorem
Suppose the sequence of learning rates (µk)∞k=1 satisfies

∞∑
k=1

µk = ∞ and
∞∑
k=1

(µk)2 <∞.

Let x∗ be the solution to the lottery problem, and suppose the corresponding Lagrangian

multipliers to x∗ exist. Then for any ϵ > 0, there exists N ∈ N+, such that when n > N , xn

obtained from the Algorithm is an ϵ−optimal solution to the problem.

Note: ϵ−optimal solution is the solution that maximizes the same objective function subject to ϵ

relaxation of the objective & constraints such as
∑

a∈A

∫
c∈C

gi(a, c)x(a, dc) ≤ ϵ.
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Thm 1a: given λ, γ, deterministic/lottery Lagrangians have same optimal value

Lagrangian in the pure strategy space A× C:

L(a, c;λ, γ) := f(a, c)−
n∑

i=1

λigi(a, c)−
ℓ∑

j=1

γj,ahj(a, c). (6)

Lagrangian in the probability space P(A× C):

L(x;λ, γ) :=∑
a∈A

∫
c∈C

f(a, c)x(a, dc)−
n∑

i=1

λi
∑
a∈A

∫
c∈C

gi(a, c)x(a, dc)−
ℓ∑

j=1

∑
a∈A

γj,a

∫
c∈C

hj(a, c)x(a, dc),

(7)

Given Lagrangian multipliers λ, γ, we prove:

max
x∈P(A×C)

L(x;λ, γ) = max
a∈A,c∈C

L(a, c;λ, γ). (8)

12



Thm 1b: given λ, γ, optimal lottery only contains optimal deterministic solutions

Furthermore, if we define Z = argmaxa∈A,c∈C L(a, c;λ, γ), then

x∗ ∈ arg max
x∈P(A×C)

L(x;λ, γ)

if and only if

(a, c) ∈ Z a.s. with respective to the probability measure x∗. (9)
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Thm 2: equivalence of lottery solution to the dual of deterministic problem

Theorem

The optimal objective value of the lottery problem is the same as the optimal objective value

of the dual problem of the deterministic problem:

max
x∈P(A×C)

min
(λ,γ)∈Rm

+×Rℓ|A|
+

L(x;λ, γ) = min
(λ,γ)∈Rm

+×Rℓ|A|
+

max
a∈A, c∈C

L(a, c;λ, γ).

≥ max
a∈A, c∈C

min
(λ,γ)∈Rm

+×Rℓ|A|
+

L(a, c;λ, γ).

Note: LHS is the primal form of the lottery problem:

max
x∈P(A×C)

min
(λ,γ)∈Rm

+×Rℓ|A|
+

L(x;λ, γ) =
∑
a∈A

∫
c∈C

f(a, c)x∗(a, dc)

where x∗ is the solution to lottery problem.
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Remark

• The theorems above bridge the gap between the dual deterministic problem and the

lottery problem.

• Theorem 2 motivates the Lagrangian iteration algorithm: solves the dual deterministic

problem via sub-gradient descent.

• Now we’ll prove that the algorithm indeed converges to the (ϵ−optimal) lottery solution.

1. If the Lagrangian iteration method converges, the solution we construct must

1 Satisfy all the constraints

2 Achieve the optimal value

2. Following the sub-gradient descent literature, the algorithm we design must converge.
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Key Proof of Main Theorem: given convergence, solution satisfies constraints

Want to show ∑
a∈A

∫
c∈C

gi(a, c)x
ϵ(a, dc) ≤ ϵ, for i ∈ {1, · · · ,m}.

For i ∈ {1, ...,m}, we have

∑
a∈A

∫
c∈C

gi(a, c)x
n(a, dc) =

1∑n
k=1 µk

n∑
k=1

µkgi(a
k, ck).

By the updating rule for λi, written

λk+1
i = max{λki + µkgi(a

k, ck), 0} ≥ λki + µkgi(a
k, ck), k = 1, · · · , n,
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Proof: given convergence, solution satisfies the inequality constraints

n∑
k=1

λk+1
i ≥

n∑
k=1

[
λki + µkgi(a

k, ck)
]
,

which can be simplified as

λn+1
i ≥ λ1i +

n∑
k=1

µkgi(a
k, ck) = λ1i +

(
n∑

k=1

µk

)∑
a∈A

∫
c∈C

gi(a, c)x
n(a, dc).

Hence ∑
a∈A

∫
c∈C

gi(a, c)x
n(a, dc) ≤

λn+1
i − λ1i∑n

k=1 µ
k
. (10)
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Computational Complexity Analysis

• Take µk ∼ k
1
2
(1+ρ) for 0 < ρ < 1. Then for ϵ > 0, the overall computational complexity

for finding an ϵ-optimal lottery solution with Lagrangian iteration is

O

(M
ρ + Λ̄

ϵ

) 2
1−ρ

|A||Ĉ|(m+ ℓ)
1+ 1

1−ρ


where Ĉ is the discretized set of C.

• Comparing the complexity to that of the linear programming interior point method, we

see in the case that |Ĉ| ∼ |A| ∼ ℓ≫ m,

|A||Ĉ|(m+ ℓ)
1+ 1

1−ρ ∼ |A|3+
1

1−ρ ≪ |A|7 ∼ (|A||Ĉ|+ ℓ|A|+m)3.5,

for ρ close to 0.

• Bigger computational advantage if optimal deterministic c can be solved by FOC.
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Computational Performance for Moral Hazard Problem with Different ∆a

∆a Iterations CPU time (s) LP CPU time (s) Size of LP

#variable #EC #IC

0.2 500 0.006 0.05 4020 21 91

0.1 1000 0.01 0.13 8040 41 381

0.05 2000 0.02 0.44 15678 79 1483

0.025 4000 0.05 1.33 30954 155 5853

0.0125 8000 0.16 6.84 61506 307 23257

0.00625 16000 0.98 - 122610 611 92721

Note: ∆a = 0.0125, it takes LP method 6.84 s to solve (2-3 orders of magnitude slower). LP

cannot handle ∆a < 0.0125 on a laptop due to memory limit. #EC & #IC: number of

equality constraints and inequality constraints.
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Application II: Optimal Tax with

Multi-dimensional Heterogeneity



Optimal Taxation with Multi-dimensional Heterogeneity

• Agent preference with two-dimensional hidden types in productivity and labor supply

elasticity wh, ηh:

uh(c, y) = log(c)− ψ

(
y
wh

) 1
ηh

+1

1
ηh

+ 1
.

• Following Judd et al (2017), we choose five values of wh ∈ {1, 2, 3, 4, 5} and five values

of ηh ∈ {1
8 ,

1
5 ,

1
3 ,

1
2 , 1}, yielding 25 distinct types indexed by (wh, ηh).

• We have 25× 24 = 600 incentive constraints.

• Want to solve optimal lottery over (c, y), which is equivalent to optimal taxation with

income tax schedule T (y) and let each agent choose labor supply ℓ = y
wh

and

consumption c = y − T (y).
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Optimal Income Tax with Hidden Types: Welfare Gain from Lotteries

(w, η) Deterministic solution (c, y) Lottery solution c lottery solution y

1, 1 1.68, 0.42 1.697 0.43

1, 1
2 1.77, 0.62 1.789 0.63

... ... ...

3, 1 2.2, 1.83 2.456 (1.74 78.08%) (3.6, 21.92%)

3, 1
2 2.47, 2.49 2.611 (2.62, 95.21%) (3.6, 4.79%)

... ... ...

... ... ...

Table 1: Optimal deterministic allocation versus optimal lottery solution.

Lottery scheme reduces 3.46% welfare loss of deterministic solution due to information

friction (defined as Hicksian “compensating variation in resources” from full-information

problem to achieve the same level of welfare). 21



Conclusion

• A new Lagrangian iteration algorithm to efficiently solve for optimal lotteries.

• Theoretical guarantee: correctness and convergence (sub-gradient descent).

• Complexity estimate: orders of magnitude better than the conventional approach.

• Applications: (1) Moral hazard problem, (2) Optimal income tax with hidden types.

• From applications: (1) much faster and memory-saving than conventional methods; (2)

new insights when the randomized tax scheme is welfare improving.
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Related Literature

• Lottery solution to problems with non-convex constraints.

1. Myerson (1982), Prescott and Townsend (1984a, 1984b), Arnott and Stiglitz (1988)

2. Prescott (2004), Prescott and Townsend (2006), Doepke and Townsend (2006)

• Computational methods for moral hazard and optimal tax with hidden types:

1. Su and Judd (2007), Armstrong et al. (2010), etc.

2. Weiss (1976), Brito et al. (1995), Hellwig (2007), Gauthier and Laroque (2014), Judd et al

(2017), among many others.

• Math literature on sub-gradient descent: Shor (2012); Nedic and Bertsekas (2001)

back
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