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Introduction

▶ Heterogeneity and aggregate shocks are important in markets with search frictions
(e.g. labor and financial markets).

▶ Most search and matching (SAM) models with heterogeneous agents study:

1. Deterministic steady state (e.g. Shimer-Smith ’00),

2. Aggregate fluctuations, but make assumptions to eliminate distribution from state space
(e.g. “block recursivity” in Menzio-Shi ’11, Lise-Robin ’17; Lagos-Rocheteau ’09).

▶ We present SAM models as high-dim. PDEs with distribution & agg. shocks as states

. . . and develop a new deep learning method, DeepSAM, to solve them globally.
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This Paper

▶ Develop DeepSAM and apply to canonical search models with aggregate shocks:
1. Shimer-Smith/Mortensen-Pissarides model with two-sided heterogeneity (today’s focus).

2. Lise-Robin model on-the-job search with worker bargaining power (at end).

3. Duffie-Garleanu-Pederson OTC model with asset and investor heterogeneity (at end).

▶ High accuracy in “global” state space (including distribution); efficient compute time.

▶ We can study non-block recursive unemployment dynamics and wage dynamics:
1. Lise-Robin style block recursive equilibria over-predict unemployment & vacancy IRF.

2. Low-type worker wages more procyclical, especially those in high-type firms

3. Large impact of distribution on aggregates when aggregate shocks affect agents unevenly.

4. Countercyclical sorting over business cycles; magnitude depends on bargaining power.
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Literature
▶ Deep learning in macro; for incomplete market heterogeneous agent models (HAM)

(e.g. Han-Yang-E ’21 “DeepHAM”, Gu-Laurière-Merkel-Payne ’23, among many others)
▶ This paper: search and matching (SAM) models.

Distribution Distribution impact on decisions
HAM Asset wealth and income Via aggregate prices

SAM Type (productivity) of agents
in two sides of matching

Via matching probability
with other types

▶ Continuous time formulation of macro models with heterogeneity
(e.g. Ahn et al. ’18, Schaab ’20, Achdou et al. ’22, Alvarez et al. ’23, Bilal ’23.)
▶ This paper: global solution with aggregate shocks.

▶ Search model with business cycle (e.g. Shimer ’05, Menzio-Shi ’11, Lise-Robin ’17.)
▶ This paper: keep distribution in the state vector.
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Shimer-Smith/Mortensen-Pissarides with Two-sided Heterogeneity
▶ Continuous time, infinite horizon environment.

▶ Workers x ∈ [0, 1] with exog density gw
t (x); Firms y ∈ [0, 1] with gf

t (y) by free entry:
▶ Unmatched: unemployed workers get benefit b; vacant firms produce nothing.
▶ Matched: type x worker and type y firm produce output ztf(x, y).
▶ zt: follows two-state continuous time Markov Chain (can be generalized).
▶ Firms can pay entry cost c and draw a firm type y from uniform distribution [0, 1] More

▶ Meet randomly at rate m(Ut,Vt), Ut is total unemployment, Vt is total vacancies.

▶ Upon meeting, agents choose whether to accept the match:
▶ Match surplus St(x, y) divided by generalized Nash bargaining: worker get fraction β.
▶ Match acceptance decision αt(x, y) = 1{St(x, y) > 0}. Match dissolve rate δ(x, y, z).

▶ Equilibrium object: gt(x, y) mass of match (x, y) ⇒ unemployed gu
t (x), vacant gv

t (y).



Recursive Equilibrium Part I: Unemployed Workers & KFE
▶ Idiosyncratic state = x, Aggregate states = (z, g(x, y)).

▶ Hamilton-Jacobi-Bellman equation for an unemployed worker’s value V u(x, z, g):

ρV u(x, z, g) = b+ m(z, g)
U(z, g)

∫ acceptance decision︷ ︸︸ ︷
α(x, ỹ, z, g) (

employed value︷ ︸︸ ︷
V e(x, ỹ, z, g) −V u(x, z, g))

change of value conditional on match

gv(ỹ)
V(z, g)dỹ

+ λzz̃(V u(x, z̃, g) − V u(x, z, g)) + DgV
u(x, z, g)︸ ︷︷ ︸

Frechet derivative:
how change of g affects V

· µg

▶ Dynamics of g(x, y) is given by Kolmogorov forward equation (KFE):

µg(x, y, z, g) := dgt(x, y)
dt

= −δ(x, y, z)g(x, y) + m(z, g)
U(z, g)V(z, g)α(x, y, z, g)gv(y)gu(x)

HJB for employed worker, vacant firm, producing firm
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Recursive Characterization For Equilibrium Surplus
▶ Surplus from match S(x, y, z, g) := V p(x, y, z, g) − V v(y, z, g) + V e(x, y) − V u(x, z, g).

▶ Characterize equilibrium with master equation for surplus: Free entry condition

ρS(x, y, z, g) = zf(x, y) − δ(x, y, z)S(x, y, z, g)

− (1 − β) m(z, g)
V(z, g;S)

∫
α(x̃, y, z, g)S(x̃, y, z, g) g

u(x̃)
U(z, g)dx̃

− b− β
m(z, g)
U(z, g)

∫
α(x, ỹ, z, g)S(x, ỹ, z, g) gv(ỹ)

V(z, g;S)dỹ

+ λ(z)(S(x, y, z̃, g) − S(x, y, z, g)) +DgS(x, y, z, g) · µg(z, g)

▶ Kolmogorov forward equation (KFE):
dgt(x, y)

dt
:= µg(x, y, z, g) = −δ(x, y, z)g(x, y) + m(z, g)

U(z, g)V(z, g)α(x, y, z, g)gv(y)gu(x)

▶ High-dim PDEs with distribution in state: hard to solve with conventional methods.
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Finite Type Approximation
▶ Approximate g(x, y) on finite types: x ∈ X = {x1, . . . , xnx}, y ∈ Y = {y1, . . . , yny }.

▶ Finite state approximation ⇒ analytical (approximate) KFE: g ≈ {gij}i≤nx,j≤ny

▶ Approximated master equation for surplus:

0 = LSS(x, y, z, g) = −(ρ+ δ)S(x, y, z, g) + zf(x, y) − b

− (1 − β)m(z, g)
V(z, g)

1
nx

nx∑
i=1
α(x̃i, y, z, g)S(x̃i, y, z, g)

gu(x̃i)
U(z, g)

− β
m(z, g)
U(z, g)

1
ny

ny∑
j=1

α(x, ỹj , z, g)S(x, ỹj , z, g) g
v(ỹj)

V(z, g)

+ λ(z)(S(x, y, z̃, g) − S(x, y, z, g)) +
nx∑
i=1

ny∑
j=1

∂gijS(x, y, z, {gij}i,j)µg(x̃i, ỹj , z, g)
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DeepSAM algorithm
▶ Approximate surplus by neural network S(x, y, z, g) ≈ Ŝ(x, y, z, g; Θ). Function form

▶ Start with initial parameter guess Θ0. At iteration n with Θn:

1. Generate K sample points, Qn =
{(
xk, yk, zk, {gij,k}i≤nx,j≤ny

)}
k≤K

.

2. Calculate the average mean squared error of surplus master equation on sample points:

L (Θn, Qn) := 1
K

∑
k≤K

∣∣∣LSŜ
(
xk, yk, zk, {gij,k}i≤nx,j≤ny

)∣∣∣2

3. Update NN parameters with stochastic gradient descent (SGD) method:

Θn+1 = Θn − ζn∇ΘL (Θn, Qn)

4. Repeat until L (Θn, Qn) ≤ ϵ with precision threshold ϵ.

▶ Once S is solved, we have α and can solve for worker and firm value functions.
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Methodology Q & A
▶ Q. What about dimension reduction?

▶ Krusell-Smith ’98 suggest approximating distribution by mean.
▶ For random search, not clear what moment enables approximation of:∫

α(x̃, y, z, g)S(x̃, y, z, g) g
u(x̃)

U(z, g)dx̃, and
∫
α(x, ỹ, z, g)S(x, ỹ, z, g) g

v(ỹ)
V(z, g)dỹ

▶ Q. How do we choose where to sample?
▶ We start by drawing distributions “between” steady states for different fixed z.
▶ Can move to ergodic sampling once error is small.
▶ Can increase sampling in regions of the state space where errors are high.

▶ Q. Why are SAM models hard to solve?
▶ Compared to PINNs, we have feedback between agent optimization and distribution.
▶ Difficult when feedback is strong & Ŝ(x, y, z, g; Θ) has sharp curvature. Use “homotopy”.
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Calibration
Frequency: annual.

Parameter Interpretation Value Target/Source
ρ Discount rate 0.05 Kaplan, Moll, Violante ’18
δ Job destruction rate 0.2 BLS job tenure 5 years
ξ Extreme value distribution for α choice 2.0

f(x, y) Production function for match (x, y) 0.6 + 0.4
(√

x + √
y
)2

Hagedorn et al ’17
β Surplus division factor 0.72 Shimer ’05
c Entry cost 4.86 Steady state V/U = 1

z, z̃ TFP shocks 1 ± 0.015 Lise Robin ’17
λz , λz̃ Poisson transition probability 0.08 Shimer ’05

δ, δ̃ Separation shocks 0.2 ± 0.02 Shimer ’05
λδ, λδ̃ Poisson transition probability 0.08 Shimer ’05

m(U , V) Matching function κUνV1−ν Hagedorn et al ’17
ν Elasticity parameter for meeting function 0.5 Hagedorn et al ’17
κ Scale parameter for meeting function 5.4 Unemployment rate 5.9%
b Worker unemployment benefit 0.5 Shimer ’05

nx Discretization of worker types 7
ny Discretization of firm types 8
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Numerical performance: Accuracy I Calibration

▶ Mean squared loss as a function of type in the master equations of S (at ergodic g).
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Numerical performance: Accuracy II Calibration

▶ Compare steady state solution without aggregate shocks to solution using
conventional methods.

Figure: Comparison with steady-state solution

Comparison for discrete α
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Numerical performance: Speed

▶ Solving the 59-dimensional surplus function takes 57 minutes on an A100 GPU,
which is easily accessible to everyone on Google Colab.

▶ To our knowledge, it’s infeasible to use any conventional methods to solve the
problem globally with 59 dimensions.
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Q1. How do block recursive models restrict aggregate dynamics?
(IRF to negative TFP shock for block recursive vs other calibrations)

Figure: IRF with different β’s vs. block-recursive model with β = 0

▶ By assuming firms get all surplus, block recursive models predict high Ut response
(because firms’ vacancy posting is very elastic to aggregate shocks).



Q2. Heterogeneity of wage dynamics in a labor search model?
▶ In Lise-Robin: “wages cannot be solved for exactly... need to solve worker values

where the distribution of workers across jobs is a state variable.”

▶ DeepSAM can solve wage dynamics with rich heterogeneity.

▶ Low-type worker wages more procyclical, especially those in high-type firms.



Q3. When is the feedback from g to α important?
(IRF to separation shock crisis: decomposition of forces)

Figure: Ergodic distribution and distribution after the “even” and “uneven” depression

▶ Two depressions (25% Ut) due to persistent separation shocks:
1. “even” depression increases separation rate for all workers,
2. “uneven” increases separation for matches between low-type workers and low-type firms.

▶ Question: how IRF and recovery differ under full solution vs under restricted
dynamics with no feedback from distribution g to agents’ decision?



A3. Feedback from g to α matter for asymmetric shocks.
Full dynamics: dgt(x, y)

dt
= −δ(x, y, zt)gt(x, y) + mt(z, gt)

Ut(gt)Vt(gt)
α(x, y, zt, gt)gu

t (x)gv
t (y)

No distribution feedback: dgt(x, y)
dt

= −δ(x, y, zt)gt(x, y) + mt(z, gt)
Ut(gt)Vt(gt)

α(x, y, zt, g
ergodic)gu

t (x)gv
t (y)

Figure: Unemployment Ut after (left) “even” shock, (right) “uneven” shock.
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Other Models

1. SAM model with on-the-job search and endogenous separation. link

2. OTC financial market with heterogeneous investors, different bond maturities, and
aggregate default risk. link
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Q4. How do agents sort over the business cycle (On-the-Job Search)?

▶ Countercyclicality of sorting depends on bargaining power.

Left to right: β = 0 (Lise-Robin ’17), 0.72 (benchmark), 1.
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Conclusion and Future Work

▶ We develop a global solution method, DeepSAM, to search and matching models with
heterogeneity and aggregate shocks.

▶ We apply DeepSAM to canonical labor search models, and find interaction between
heterogeneity and aggregate shocks that we cannot study before.

▶ A powerful new tool to be combined with rich data of heterogeneous workers and
firms over business cycles!

▶ More applications:
▶ Spatial and network models with aggregate uncertainty.

▶ ...
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Thank You!



Literature
▶ Deep learning in macro; for incomplete market heterogeneous agent models (HAM)

(e.g. Han-Yang-E ’21 “DeepHAM”, Gu-Laurière-Merkel-Payne ’23, among many others)
▶ This paper: search and matching (SAM) models.

Distribution Distribution impact on decisions
HAM Asset wealth and income Via aggregate prices

SAM Type (productivity) of agents
in two sides of matching

Via matching probability
with other types

▶ Continuous time formulation of macro models with heterogeneity
(e.g. Ahn et al. ’18, Schaab ’20, Achdou et al. ’22, Alvarez et al. ’23, Bilal ’23.)
▶ This paper: global solution with aggregate shocks.

▶ Search model with business cycle (e.g. Shimer ’05, Menzio-Shi ’11, Lise-Robin ’17.)
▶ This paper: keep distribution in the state vector.
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Deep Learning for Economic Models
▶ Deep learning has been successful in high-dimensional scientific computing problems.

▶ We can use deep learning to solve high-dim value & policy functions in economics:

1. Use deep neural networks to approximate value function V : RN → R

V (x) ≈ LP ◦ · · · ◦ Lp ◦ · · · ◦ L1(x), x: high-dim state vector,
hp = Lp(hp−1) = σ

(
Wphp−1 + bp

)
, h0 = x,

σ : element-wise nonlinear fn, e.g. Tanh(·). Want to solve unknown parameters Θ = {Wp,bp}p.

2. Cast high-dim function into a loss function, e.g. Bellman equation residual.

3. Optimize unknown parameters, Θ, to minimize average loss on a “global” state space,
using stochastic gradient descent (SGD) method.

▶ Similar procedure to polynomial “projection”, but more efficient in practice. back
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Comparison to Other Heterogeneous Agent Search Models

▶ Lise-Robin ’17: sets β = 0 (and other conditions, including Postal-Vinay Robin style
Bertrand competition for workers searching on-the-job)

S(x, y, z, g) = S(x, y, z), α(x, y, z, g) = α(x, y, z)

▶ Menzio-Shi ’11: competitive search (directed across a collection of sub-markets):

S(x, y, z, g) = S(x, y, z)

▶ We look for a solution for S and α in terms of the distribution g.
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Modification 1: Finite Type Approximation
▶ Approximate g(x, y) on finite types: x ∈ X = {x1, . . . , xnx}, y ∈ Y = {y1, . . . , yny }.

▶ Finite state approximation ⇒ analytical (approximate) KFE: g ≈ {gij}i≤nx,j≤ny

▶ Approximated master equation for surplus:

0 = LSS(x, y, z, g) = −(ρ+ δ)S(x, y, z, g) + zf(x, y) − b

− (1 − β)m(z, g)
V(z, g)

1
nx

nx∑
i=1
α(x̃i, y, z, g)S(x̃i, y, z, g)

gu(x̃i)
U(z, g)

− β
m(z, g)
U(z, g)

1
ny

ny∑
j=1

α(x, ỹj , z, g)S(x, ỹj , z, g) g
v(ỹj)

V(z, g)

+ λ(z)(S(x, y, z̃, g) − S(x, y, z, g)) +
nx∑
i=1

ny∑
j=1

∂gijS(x, y, z, {gij}i,j)µg(x̃i, ỹj , z, g)
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Modification 2: Approximate Discrete Choice

▶ In the original model,

α(x, y, z, g) = 1{S(x, y, z, g) > 0}

▶ Discrete choice α ⇒ discontinuity of S(x, y, z, g) at some g.

▶ To ensure master equation well defined & NN algorithm works, we approximate with

α(x, y, z, g) = 1
1 + e−ξS(x,y,z,g)

▶ Interpretation: logit choice model with utility shocks ∼ extreme value distribution.
(ξ → ∞ ⇒ discrete choice α.)
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DeepSAM vs Conventional method at DSS: discrete case

back
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Free Entry Condition
▶ Firms can pay entry cost c and draw a firm type y from uniform distribution [0, 1]
▶ We assume free entry with entry cost c:

c = E[V v
t ] =

∫
V v(ỹ, z, g)dỹ. (1)

▶ As the matching function is homothetic m(zt,gt)
Vt

= m̂
(

Vt
Ut

)
, combining free entry

condition with HJB equation for V v gives:

m̂

(Vt

Ut

)
= ρc∫ ∫

α(x̃, ỹ)gu
t (x̃)
Ut

(1 − β)St(x̃, ỹ)dx̃dỹ
⇒ Vt = Utm̂

−1 (· · · ) (2)

where gu
t = gw

t −
∫
gm

t (x, y)dy and so the RHS can be computed from gm
t and St.

▶ gf
t = Vt + Pt, where Vt and Pt can be expressed in terms of g and S.

▶ With free entry condition, the master equation expression for surplus takes the same
form as before but with different expressions of gf (y).

back
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Recursive Equilibrium Part II: Other Equations
▶ Hamilton-Jacobi-Bellman equation (HJBE) for employed worker’s value V e(x, y, z, g):

ρV e(x, y, z, g) = w(x, y, z, g) + δ(x, y, z) (V u(x, z, g) − V e(x, y, z, g))
+ λzz̃(V e(x, y, z̃, g) − V e(x, y, z, g)) +DgV

e(x, y, z, g) · µg

▶ HJBE for a vacant firm’s value V v(y, z, g):

ρV v(y, z, g) = m(z, g)
V(z, g)

∫
α(x̃, y, z, g)(V p(x̃, y, z, g) − V v(y, z, g)) g

u(x̃)
U(z, g)dx̃

+ λzz̃(V v(x, z̃, g) − V v(x, z, g)) +DgV
v(y, z, g) · µg

▶ HJBE for a producing firm’s value V p(x, y, g):

ρV p(x, y, z, g) = zf(x, y) − w(x, y, z, g) + δ(x, y, z)(V v(y, z, g) − V p(x, y, z, g))
+ λzz̃(V p(x, y, z̃, g) − V p(x, y, z, g)) +DgV

p(x, y, z, g) · µg

back
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Variation in α as the Distribution Varies

back
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On-The-Job Search: Environment Features

▶ Same worker types, firm types, and production function.

▶ Now all workers search; meeting rate is m(Wt,Vt); total search effort is Wt := Ut +ϕEt

▶ Terms of trade when a vacant ỹ-firm meets:
▶ Unemployed x-worker: Nash bargaining where workers get surplus fraction β,
▶ Worker in (x, y) match: Nash bargaining over incremental surplus.

If St(x, ỹ) > St(x, y), worker moves to firm ỹ and gets additional β(St(x, ỹ) − St(x, y)).

▶ Endogenous separation αb
t(x, y) = 1 when St(x, y) < 0.
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Recursive Characterization For Equilibrium Surplus
▶ Can characterize equilibrium with the master equation for the surplus:

ρS(x, y, z, g) = zf(x, y) − (δ + αb(x, y, z, g))S(x, y, z, g)

− m(z, g)
W(z, g)V(z, g)

[
(1 − β)

∫
α(x̃, y, z, g)S(x̃, y, z, g)gu(x̃)dx̃

−ϕ(1 − β)
∫
αp(x̃, y, ỹ, z, g)(S(x̃, y, z, g) − S(x̃, ỹ, z, g))g(x̃, ỹ)dx̃dỹ

+ϕβ
∫
αp(x, ỹ, y, z, g)S(x, y, z, g)gv(ỹ)dỹ

]

− b− β
m(z, g)

W(z, g)V(z, g)

∫
α(x, ỹ, z, g)S(x, ỹ, z, g)gv(ỹ)dỹ

+ λ(z)(S(x, y, z̃, g) − S(x, y, z, g)) +DgS(x, y, z, g) · µg(z, g)
where:

αp(x̃, y, ỹ, z, g) := 1{S(x̃, y, z, g) ≥ St(x̃, ỹ, z, g) ≥ 0} KFE
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On-the-job-search: KFE

▶ The KFE becomes:

dgm
t (x, y) = − δgm

t (x, y)dt

− ϕ
m(Wt,Vt)

WtVt
gm

t (x, y)
∫
αp

t (x, y, ỹ)gv
t (ỹ)dỹdt

+ m(Wt,Vt)
WtVt

αt(x, y)gu
t (x)gv

t (y)dt

+ ϕ
m(Wt,Vt)

WtVt

∫
αp

t (x̃, ỹ, y)gv
t (y)g

m
t (x̃, ỹ)

Et
dx̃dỹdt

back

Payne, Rebei, Yang DeepSAM 12 / 25



Worker Bargaining Power Influences Assortative Matching

Sorting at the ergodic distribution for different worker bargaining power β. Left to right
β = 0 (Lise-Robin ’17), 0.5, 0.72 (benchmark), 1.

Additional parameter calibration: ϕ = 0.2.
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Sorting Over Business Cycles
▶ Study how “mismatch” changes over the business cycle. back

“PAM” pairs: pairs where x & y are close. “Mismatch”: pairs where x & y are not close.
Payne, Rebei, Yang DeepSAM 14 / 25
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Environment: Setting, Bonds, and Households

▶ Continuous time, infinite horizon environment.

▶ There are many bonds, k ∈ {1, . . . ,K}, in positive net supply sk:
▶ Every bond pays the same dividend δ > 0.
▶ Bond k matures at rate 1/τk (so it has average maturity τk).

▶ Populated by a unit-mass continuum of infinitely-lived and risk-neutral investors:
▶ An investor can hold either zero or one share of at most one type of asset.
▶ Investor type j ∈ {1, . . . , J} gets flow utility δ − ψ(j, k) from holding bond k.
▶ Agents switch from type i to j at rate λi,j .

▶ Aggregate (default) state z ∈ {z1, . . . , zn}, switches at rate ζz,z′ .
At state z, asset k pays a fraction ϕ(k, z) of the coupon and the principal.



Distribution and Bargaining

▶ An investor’s state is made up of her holding cost j ∈ {1, . . . , J} and her ownership
status, for each asset type k ∈ {1, . . . ,K} (owner o or non-owner n). Hence the set of
investor idiosyncratic states is:

A = {1n, 2n, . . . , Jn, 1o1, . . . , 1oK, 2o1, . . . 2oK, Jo1, . . . , JoK} (3)

▶ The rate of contact between investors with states a and b is:

Ma,b = κa,bgagb (4)

▶ Agents a, b engage in Generalized Nash bargaining with bargaining power βa,b.



Value Function: Non-Owners

▶ The value function for non-owner with type i, V (in, g, z), is given by:

ρiV (in, g, z) =
∑

a

κin,aα(in, a, g, z)βin,aS(in, a, z, g)

+
∑

k

ξi,k(V (iok, g, z) − V (in, g, z))

+
∑
j ̸=i

λi,j(V (jn, g, z) − V (in, g, z))

+
∑
z′

ζz,z′(V (in, g, z′) − V (in, g, z)) +
∑
a∈A

∂gaV (in, g, z)µg(a, z)

where α(in, jok, g, z) is an indicator for whether the surplus from the trade is positive
S(in, jok, g, z) > 0 and the trade is accepted upon matching.



Value Function: Owners

▶ Value function for an investor of type i holding asset k, V (iok, g, z), is given by:

ρiV (iok, g, z) = δϕ(k, z) − ψ(i, k) + 1
τk

(V (in, g, z) + π(k, z) − V (iok, g, z))

+
∑

a

κiok,aα(iok, a, g, z)gaβiok,aS(iok, a, g, z)

+
∑
j ̸=i

λi,j(V (jok, g, z) − V (iok, g, z))

+
∑
z′

ζz,z′(V (iok, g, z′) − V (iok, g, z)) +
∑
a∈A

∂gaV (iok, g, z)µg(a, z).



Parameter Values: Holding Costs

Maturity (τ)
τ1 = 0.25 τ2 = 1.0 τ3 = 5 τ4 = 10

Agent Type (i)

A δϕ(1, z) δϕ(2, z) δϕ(3, z) δϕ(4, z)
B 0.015 0.015 0.015 0.015
C 0.0 0.0 0 0.0
D 0.0125 0.01 0 0.0025
E 0.0055 0.0055 0.0035 0

Table: Holding costs: ψ(i, τ).



Parameter Values: Switching Rates

Agent Type (j)
A B C D E

Agent Type (i)

A − − − − −
B − − 0.1 − −
C − 0.5 − − −
D − − − − 0.3
E − − − 0.3 −

Table: Switching rates: λ(i, g).



Parameter Values: Participation in Primary Market

Maturity (τ)
τ1 = 0.25 τ2 = 1.0 τ3 = 5 τ4 = 10

Agent Type (i)

A ξ1 ξ2 ξ3 ξ4

B − − − −
C − − − −
D − − − −
E − − − −

Table: Primary market participation: ξ(i, τ).



Parameter Values: Mathing Rates and Bargaining

κa,b =



10, if (a, b) = (in, jok) and i, j ̸= A,
10, if (a, b) = (iok, jok) and i, j ̸= A,
20, if (a, b) = (in,Aok) and i ̸= A,
0, if (a, b) = (iok,Aol) and ∀i,
0, if (a, b) = (in, jn) and ∀i, j,

(5)

βa,b =


0.5, if (a, b) = (in, jok) and i, j ̸= A,
0.5, if (a, b) = (iok, jol) and i, j ̸= A,
0.05, if (a, b) = (in,Aok) and i, j ̸= A,

(6)



Parameter Values: Other Values

Parameter Interpretation Value Target/Source
ρ Discount rate 0.05 Chen et al. (2017)
δ Bond Coupon Rate 0.01

Default State: z ∈ {zL, zM , zH}
ϕ(z) Coupon haircut {0.5, 0.9, 1.0}
π(z) Principal haircut {0.85, 0.95, 1.0}

ζM,L, ζM,H Rate from 2 to 1 and 2 to 3 0.1 Crisis every 10 years
ζL,M , ζH,M Rate from 1 to 2 and 3 to 2 0.5 Average crisis duration 2 years



Neural Network Parameter Values

Parameter Value
Number of layers 5
Neurons per layer 100
Activation function tanh(·)
Initial learning rate 10−4

Final learning rate 10−5

Initial sample size per epoch 256
Sample size per epoch 512
Convergence threshold for target calibration 10−6

Table: Neural network parameters
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