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Introduction

▶ Heterogeneity and aggregate shocks are important in markets with search frictions
(e.g. labor and financial markets).

▶ Most search and matching (SAM) models with heterogeneous agents study:

1. Deterministic steady state (e.g. Shimer-Smith ’00),

2. Aggregate fluctuations, but make assumptions to eliminate distribution from state space
(e.g. “block recursivity” in Menzio-Shi ’11, Lise-Robin ’17; Lagos-Rocheteau ’09).

▶ We present SAM models as high-dim. PDEs with distribution & agg. shocks as states

. . . and develop a new deep learning method, DeepSAM, to solve them globally.

▶ We also extend DeepSAM for SMM estimation within efficient computational time.
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This Paper
▶ Develop DeepSAM and apply to canonical search models with aggregate shocks:

1. Shimer-Smith/Mortensen-Pissarides model with two-sided heterogeneity.

2. Lise-Robin on-the-job search (OJS) model with endogenous separation & worker bargain.

3. Duffie-Garleanu-Pederson OTC model with asset and investor heterogeneity (in paper).

▶ High accuracy in “global” state space (including distribution); efficient compute time
for both solution and estimation.

▶ We can study non-block recursive unemployment dynamics and wage dynamics:
1. Large impact of distribution on aggregates when aggregate shocks affect agents unevenly.

2. A search-theoretical explanation for Okun’s hypothesis.

3. Low-type worker wages more procyclical.

4. Lise-Robin style block recursive equilibria over-predict unemployment & vacancy IRF.
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Literature
▶ Deep learning in macro; for incomplete market heterogeneous agent models (HAM)

(e.g. Maliar et al ’21, Azinovic et al ’22, Kahou et al ’21, Han-Yang-E ’21 “DeepHAM”;
Fernández-Villaverde et al ’20, Huang ’22, Gu-Laurière-Merkel-Payne ’23, among others)
▶ This paper: search and matching (SAM) models.

Distribution Distribution impact on decisions
HAM Asset wealth and income Via aggregate prices

SAM Type (productivity) of agents
in two sides of matching

Via matching process
with other types

▶ Search model with business cycle (e.g. Shimer ’05, Menzio-Shi ’11, Lise-Robin ’17.)
▶ This paper: keep distribution in the state vector.

▶ Integrate deep learning based solution methods with calibration and estimation (e.g.,
Chen et al ’23, Kase et al ’23, Friedl et al ’23, Duarte & Fonseca ’24)
▶ This paper: standard internal calibration practice for quantitative macro.
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Shimer-Smith/Mortensen-Pissarides with Two-sided Heterogeneity
▶ Continuous time, infinite horizon environment.

▶ Workers x ∈ [0, 1] with exog density gw
t (x); Firms y ∈ [0, 1] with gf

t (y) by free entry:
▶ Unmatched: unemployed workers get benefit b; vacant firms pay vacancy cost c.
▶ Matched: type x worker and type y firm produce output ztf(x, y).
▶ zt: follows two-state continuous time Markov Chain (can be generalized).
▶ Firms make entry decision and then draw a type y from uniform distribution [0, 1]. More

▶ Meet randomly at rate m(Ut,Vt), Ut is total unemployment, Vt is total vacancies.

▶ Upon meeting, agents choose whether to accept the match:
▶ Match surplus St(x, y) divided by generalized Nash bargaining: worker get fraction β.
▶ Match acceptance decision αt(x, y) = 1{St(x, y) > 0}. Exogenous dissolve rate δ(x, y, z).

▶ Equilibrium object: gt(x, y) distribution of match ⇒ unemployed gu
t (x), vacant gv

t (y).



Recursive Equilibrium Part I: Unemployed Workers & KFE
▶ Idiosyncratic state = x, Aggregate states = (z, g(x, y)).

▶ Hamilton-Jacobi-Bellman equation for an unemployed worker’s value V u(x, z, g):

ρV u(x, z, g) = b+ m(z, g)
U(z, g)

∫ acceptance decision︷ ︸︸ ︷
α(x, ỹ, z, g) (

employed value︷ ︸︸ ︷
V e(x, ỹ, z, g) −V u(x, z, g))

change of value conditional on match

gv(ỹ)
V(z, g)dỹ

+ λzz̃(V u(x, z̃, g) − V u(x, z, g)) + DgV
u(x, z, g)︸ ︷︷ ︸

Frechet derivative:
how change of g affects V

· µg

▶ Dynamics of g(x, y) is given by Kolmogorov forward equation (KFE):

µg(x, y, z, g) := dgt(x, y)
dt

= −δ(x, y, z)g(x, y) + m(z, g)
U(z, g)V(z, g)α(x, y, z, g)gv(y)gu(x)

HJB for employed worker, vacant firm, producing firm
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Recursive Characterization For Equilibrium Surplus
▶ Surplus from match S(x, y, z, g) := V p(x, y, z, g) − V v(y, z, g) + V e(x, y) − V u(x, z, g).

▶ Characterize equilibrium with master equation for surplus: Free entry condition

ρS(x, y, z, g) = zf(x, y) − δ(x, y, z)S(x, y, z, g)

+ c− (1 − β) m(z, g)
V(z, g;S)

∫
α(x̃, y, z, g)S(x̃, y, z, g) g

u(x̃)
U(z, g)dx̃

− b− β
m(z, g)
U(z, g)

∫
α(x, ỹ, z, g)S(x, ỹ, z, g) gv(ỹ)

V(z, g;S)dỹ

+ λ(z)(S(x, y, z̃, g) − S(x, y, z, g)) +DgS(x, y, z, g) · µg(z, g)

▶ Kolmogorov forward equation (KFE):
dgt(x, y)

dt
:= µg(x, y, z, g) = −δ(x, y, z)g(x, y) + m(z, g)

U(z, g)V(z, g)α(x, y, z, g)gv(y)gu(x)

▶ High-dim PDEs with distribution in state: hard to solve with conventional methods.
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Finite Type Approximation
▶ Approximate g(x, y) on finite types: x ∈ X = {x1, . . . , xnx}, y ∈ Y = {y1, . . . , yny }.

▶ Finite state approximation ⇒ analytical (approximate) KFE: g ≈ {gij}i≤nx,j≤ny

▶ Approximated master equation for surplus:

0 = LSS(x, y, z, g) = −(ρ+ δ)S(x, y, z, g) + zf(x, y) + c− b

− (1 − β)m(z, g)
V(z, g)

1
nx

nx∑
i=1
α(x̃i, y, z, g)S(x̃i, y, z, g)

gu(x̃i)
U(z, g)

− β
m(z, g)
U(z, g)

1
ny

ny∑
j=1

α(x, ỹj , z, g)S(x, ỹj , z, g) g
v(ỹj)

V(z, g)

+ λ(z)(S(x, y, z̃, g) − S(x, y, z, g)) +
nx∑
i=1

ny∑
j=1

∂gijS(x, y, z, {gij}i,j)µg(x̃i, ỹj , z, g)
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DeepSAM Algorithm for Solving the Model
▶ Approximate surplus by neural network S(x, y, z, g) ≈ Ŝ(x, y, z, g; Θ). Function form

▶ Start with initial parameter guess Θ0. At iteration n with Θn:

1. Generate K sample points, Qn =
{(
xk, yk, zk, {gij,k}i≤nx,j≤ny

)}
k≤K

.

2. Calculate the average mean squared error of surplus master equation on sample points:

L (Θn, Qn) := 1
K

∑
k≤K

∣∣∣LSŜ
(
xk, yk, zk, {gij,k}i≤nx,j≤ny

)∣∣∣2

3. Update NN parameters with stochastic gradient descent (SGD) method:

Θn+1 = Θn − ζn∇ΘL (Θn, Qn)

4. Repeat until L (Θn, Qn) ≤ ϵ with precision threshold ϵ.

▶ Once S is solved, we have α and can solve for worker and firm value functions.
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DeepSAM for Estimation with Simulated Method of Moment
▶ DeepSAM for solving the model (e.g. 59 dimension PDE):

LSS(x, y, z, g) = 0 (1)

▶ Include structural parameters directly in state space: DeepSAM for estimating the
model, solve (e.g. 59 + dim(Ω) dimension PDE):

LS̃S̃(x, y, z, g,Ω) = 0 (2)

Ω: structural parameters for estimation.

▶ Dimension of (2) is only marginally higher than (1). Solving (2), we obtain the model
solution over a range of parameter space, enabling estimation through simulation.
▶ We use simulation data to build a surrogate model mapping parameters to moments.

▶ Estimation only takes a marginally longer time than solving the model.

Payne, Rebei, Yang DeepSAM 9 / 23



Table of Contents

Methodology

Numerical Performance: Accuracy and Speed

Distribution and Business Cycle Dynamics

More Applications: OJS and OTC Search



Numerical Accuracy

We confirm DeepSAM achieves high numerical accuracy using two measures:

▶ Small numerical error. Use DeepSAM to solve the problem (59 dimensional PDE),
and compute loss everywhere in high-dimensional state space. Loss: 10−7 ∼ 10−6.

▶ Verification on models with known solution. Use DeepSAM to solve model without
aggregate shocks (58 dimensional PDE) and obtain solution at steady state. Compare
with steady state solution from conventional methods. Difference: 10−7 ∼ 10−6.

Details
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Calibration of Shimer-Smith Model with Aggregate Shocks
Frequency: annual.

Parameter Interpretation Value Target/Source
ρ Discount rate 0.05 Kaplan, Moll, Violante ’18
δ Job destruction rate 0.2 BLS job tenure 5 years
ξ Extreme value distribution for α choice 2.0

f(x, y) Production function for match (x, y) 0.6 + 0.4
(√

x + √
y
)2

Hagedorn et al ’17
β Surplus division factor 0.72 Shimer ’05
c Entry cost 4.86 Steady state V/U = 1

z, z̃ TFP shocks 1 ± 0.015 Lise Robin ’17
λz , λz̃ Poisson transition probability 0.08 Shimer ’05

δ, δ̃ Separation shocks 0.2 ± 0.02 Shimer ’05
λδ, λδ̃ Poisson transition probability 0.08 Shimer ’05

m(U , V) Matching function κUνV1−ν Hagedorn et al ’17
ν Elasticity parameter for meeting function 0.5 Hagedorn et al ’17
κ Scale parameter for meeting function 5.4 Unemployment rate 5.9%
b Worker unemployment benefit 0.5 Shimer ’05

nx Discretization of worker types 7
ny Discretization of firm types 8
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Numerical Performance: Accuracy I Calibration

▶ Mean squared loss as a function of type in the master equations of S (at ergodic g).
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Numerical Performance: Accuracy II Calibration

▶ Compare steady state solution without aggregate shocks to solution using
conventional methods.

Figure: Comparison with steady-state solution

Comparison for discrete α

back
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Computational Speed for Solving and Estimating OJS Model

Solution Given
the Value of
Structural
Parameters

Solution with
Structural

Parameters as
Pseudo-states

Simulation
& Training
Surrogate

Model

Simulated
Method of
Moments

Entire
Estimation

MSE Loss 1.97 × 10−6 4.8 × 10−6 6.13 × 10−7 1.24 × 10−4 -

Time 55min 4h 1min 1h 3min 1.4min 5h 5min

▶ Solution: 59-dimension PDE.

▶ Estimation: solve the model over economic parameter space, and simulate across 10,000
parameter combinations for simulated method of moments.

Moments E[U ] E[V ] E[E2E] E[U2E] E[E2U ]
Data 0.058 0.037 0.025 0.468 0.025
Model 0.058 0.037 0.026 0.431 0.026
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Estimation of OJS Model: Visualization in 2D

Target moment: E[U ],E[V ]. Parameter: matching efficiency κ, worker bargaining power β.
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Q1. Does distribution feedback matter? Evidence from COVID-19

▶ We first apply our method to study labor market dynamics after COVID-19 shock.
▶ Similar to most recessions, COVID-19 hits workers and firms in a heterogeneous way,

which shifts the distribution of matches.
▶ We calibrate separation rate δ(x, y, z) to match the heterogeneous employment effect

of COVID-19 on different workers/firms (Cajner et al., 2020).

▶ Study aggregate dynamics with and without distribution feedback to agent decision.



A1. Distribution feedback matters after asymmetric shocks.
▶ Aggregate dynamics with and without distribution feedback to agent decision:

Full dynamics: dgt(x, y)
dt

= −δ(x, y, zt)gt(x, y) + mt(z, gt)
Ut(gt)Vt(gt)

α(x, y, zt, gt)gu
t (x)gv

t (y)

No distribution feedback: dgt(x, y)
dt

= −δ(x, y, zt)gt(x, y) + mt(z, gt)
Ut(gt)Vt(gt)

α(x, y, zt, g
ergodic)gu

t (x)gv
t (y)

Figure: Employment drop after the COVID-19 shock



Mechanism: high-low matches are more likely given distribution shift

Figure: Difference of distribution and acceptance after the asymmetric COVID-19 shock, compared
to the ergodic steady state.

▶ For high-type firms: relatively more low-type unemployed workers are available, so accept
more of them.
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More Applications in the Paper

1. SAM model with on-the-job search and endogenous separation. details

▶ Similar to Lise-Robin ’17, but allow for β ∈ (0, 1).

▶ We also do not assume that vacancies are destroyed if not filled.

2. OTC financial market with heterogeneous investors, different bond maturities, and
aggregate default risk. details

▶ Introduce idiosyncratic type switching and asset trade compared to our labor model.

▶ Offers a search-theoretic rationale for the volatility of the term structure.
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Q2. Are wage dynamics heterogeneous across distribution?
▶ In Lise-Robin: “wages cannot be solved for exactly... need to solve worker values

where the distribution of workers across jobs is a state variable.”
▶ DeepSAM can solve wage dynamics with rich heterogeneity.
▶ Low-type worker wages more procyclical.

Figure: Wage change after positive aggregate shocks.



Q3. Who benefits more over a longer expansion?
▶ Okun’s (1973) hypothesis: longer expansion benefits low-income workers more.

▶ We find Ut for low-income workers drops more than high-income in longer expansion.

Figure: ∆Ut for workers in different groups
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A Search-Theoretical Explanation for Okun’s Hypothesis

Figure: Left: ∆Ut for different workers. Right: expansion ⇒ positive assortative matching ↓.

▶ Mechanism: sorting weakens over time in expansions, high-type firms more inclined
to hire low-type workers during longer expansions.

▶ Important that workers&firms understand the distribution of matches over time.
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Conclusion and Future Work

▶ We develop an integrated global solution and estimation method, DeepSAM, to
search and matching models with heterogeneity and aggregate shocks.

▶ We apply DeepSAM to three general setups in labor and financial search models
(without simplification assumptions). The method works well, solves new variables
(e.g. wage), and generates novel economic insights.

▶ A foundational tool for a large literature with more applications:
▶ Richer models in labor, financial, and money search, combined with rich micro data.

▶ Spatial and network models with aggregate uncertainty (similar math structure).
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Thank You!



Deep Learning for Economic Models
▶ Deep learning has been successful in high-dimensional scientific computing problems.

▶ We can use deep learning to solve high-dim value & policy functions in economics:

1. Use deep neural networks to approximate value function V : RN → R

V (x) ≈ LP ◦ · · · ◦ Lp ◦ · · · ◦ L1(x), x: high-dim state vector,
hp = Lp(hp−1) = σ

(
Wphp−1 + bp

)
, h0 = x,

σ : element-wise nonlinear fn, e.g. Tanh(·). Want to solve unknown parameters Θ = {Wp,bp}p.

2. Cast high-dim function into a loss function, e.g. Bellman equation residual.

3. Optimize unknown parameters, Θ, to minimize average loss on a “global” state space,
using stochastic gradient descent (SGD) method.

▶ Similar procedure to polynomial “projection”, but more efficient in practice. back
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Methodology Q & A
▶ Q. What about dimension reduction?

▶ Krusell-Smith ’98 suggest approximating distribution by mean.
▶ For random search, not clear what moment enables approximation of:∫

α(x̃, y, z, g)S(x̃, y, z, g) g
u(x̃)

U(z, g)dx̃, and
∫
α(x, ỹ, z, g)S(x, ỹ, z, g) g

v(ỹ)
V(z, g)dỹ

▶ Q. How do we choose where to sample?
▶ We start by drawing distributions “between” steady states for different fixed z.
▶ Can move to ergodic sampling once error is small.
▶ Can increase sampling in regions of the state space where errors are high.

▶ Q. Why are SAM models hard to solve?
▶ Compared to PINNs, we have feedback between agent optimization and distribution.
▶ Difficult when feedback is strong & Ŝ(x, y, z, g; Θ) has sharp curvature. Use “homotopy”.
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Comparison to Other Heterogeneous Agent Search Models

▶ Lise-Robin ’17: sets β = 0 (and other conditions, including Postal-Vinay Robin style
Bertrand competition for workers searching on-the-job)

S(x, y, z, g) = S(x, y, z), α(x, y, z, g) = α(x, y, z)

▶ Menzio-Shi ’11: competitive search (directed across a collection of sub-markets):

S(x, y, z, g) = S(x, y, z)

▶ We look for a solution for S and α in terms of the distribution g.
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Modification 1: Finite Type Approximation
▶ Approximate g(x, y) on finite types: x ∈ X = {x1, . . . , xnx}, y ∈ Y = {y1, . . . , yny }.

▶ Finite state approximation ⇒ analytical (approximate) KFE: g ≈ {gij}i≤nx,j≤ny

▶ Approximated master equation for surplus:

0 = LSS(x, y, z, g) = −(ρ+ δ)S(x, y, z, g) + zf(x, y) − b

− (1 − β)m(z, g)
V(z, g)

1
nx

nx∑
i=1
α(x̃i, y, z, g)S(x̃i, y, z, g)

gu(x̃i)
U(z, g)

− β
m(z, g)
U(z, g)

1
ny

ny∑
j=1

α(x, ỹj , z, g)S(x, ỹj , z, g) g
v(ỹj)

V(z, g)

+ λ(z)(S(x, y, z̃, g) − S(x, y, z, g)) +
nx∑
i=1

ny∑
j=1

∂gijS(x, y, z, {gij}i,j)µg(x̃i, ỹj , z, g)
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Modification 2: Approximate Discrete Choice

▶ In the original model,

α(x, y, z, g) = 1{S(x, y, z, g) > 0}

▶ Discrete choice α ⇒ discontinuity of S(x, y, z, g) at some g.

▶ To ensure master equation well defined & NN algorithm works, we approximate with

α(x, y, z, g) = 1
1 + e−ξS(x,y,z,g)

▶ Interpretation: logit choice model with utility shocks ∼ extreme value distribution.
(ξ → ∞ ⇒ discrete choice α.)
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Calibration of Shimer-Smith Model with Aggregate Shocks
Frequency: annual.

Parameter Interpretation Value Target/Source
ρ Discount rate 0.05 Kaplan, Moll, Violante ’18
δ Job destruction rate 0.2 BLS job tenure 5 years
ξ Extreme value distribution for α choice 2.0

f(x, y) Production function for match (x, y) 0.6 + 0.4
(√

x + √
y
)2

Hagedorn et al ’17
β Surplus division factor 0.72 Shimer ’05
c Entry cost 4.86 Steady state V/U = 1

z, z̃ TFP shocks 1 ± 0.015 Lise Robin ’17
λz , λz̃ Poisson transition probability 0.08 Shimer ’05

δ, δ̃ Separation shocks 0.2 ± 0.02 Shimer ’05
λδ, λδ̃ Poisson transition probability 0.08 Shimer ’05

m(U , V) Matching function κUνV1−ν Hagedorn et al ’17
ν Elasticity parameter for meeting function 0.5 Hagedorn et al ’17
κ Scale parameter for meeting function 5.4 Unemployment rate 5.9%
b Worker unemployment benefit 0.5 Shimer ’05

nx Discretization of worker types 7
ny Discretization of firm types 8
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Numerical Performance: Accuracy I Calibration

▶ Mean squared loss as a function of type in the master equations of S (at ergodic g).

Payne, Rebei, Yang DeepSAM 7 / 30



Numerical Performance: Accuracy II Calibration

▶ Compare steady state solution without aggregate shocks to solution using
conventional methods.

Figure: Comparison with steady-state solution

Comparison for discrete α

back
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DeepSAM vs Conventional method at DSS: discrete case

back

Payne, Rebei, Yang DeepSAM 9 / 30



Free Entry Condition
▶ Firms make entry decision and then draw type y from uniform distribution [0, 1]:

0 = E[V v
t ] =

∫
V v(ỹ, z, g)dỹ. (3)

▶ As the matching function is homothetic m(zt,gt)
Vt

= m̂
(

Vt
Ut

)
, combining free entry

condition with HJB equation for V v gives:

m̂

(Vt

Ut

)
= ρc∫ ∫

α(x̃, ỹ)gu
t (x̃)
Ut

(1 − β)St(x̃, ỹ)dx̃dỹ
⇒ Vt = Utm̂

−1 (· · · ) (4)

where gu
t = gw

t −
∫
gm

t (x, y)dy and so the RHS can be computed from gm
t and St.

▶ gf
t = Vt + Pt, where Vt and Pt can be expressed in terms of g and S.

▶ With free entry condition, the master equation expression for surplus takes the same
form as without free entry, but with different expressions of gf (y).

back
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Recursive Equilibrium Part II: Other Equations
▶ Hamilton-Jacobi-Bellman equation (HJBE) for employed worker’s value V e(x, y, z, g):

ρV e(x, y, z, g) = w(x, y, z, g) + δ(x, y, z) (V u(x, z, g) − V e(x, y, z, g))
+ λzz̃(V e(x, y, z̃, g) − V e(x, y, z, g)) +DgV

e(x, y, z, g) · µg

▶ HJBE for a vacant firm’s value V v(y, z, g):

ρV v(y, z, g) = − c+ m(z, g)
V(z, g)

∫
α(x̃, y, z, g)(V p(x̃, y, z, g) − V v(y, z, g)) g

u(x̃)
U(z, g)dx̃

+ λzz̃(V v(x, z̃, g) − V v(x, z, g)) +DgV
v(y, z, g) · µg

▶ HJBE for a producing firm’s value V p(x, y, g):

ρV p(x, y, z, g) = zf(x, y) − w(x, y, z, g) + δ(x, y, z)(V v(y, z, g) − V p(x, y, z, g))
+ λzz̃(V p(x, y, z̃, g) − V p(x, y, z, g)) +DgV

p(x, y, z, g) · µg

back

Payne, Rebei, Yang DeepSAM 11 / 30



Variation in α as the Distribution Varies

back



Q2. How do block recursive models restrict aggregate dynamics?
(IRF to negative TFP shock for block recursive vs other calibrations)

Figure: IRF with different β’s vs. block-recursive model with β = 0

▶ By assuming firms get all surplus, block recursive models predict high Ut response
(because firms’ vacancy posting is very elastic to aggregate shocks).
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On-The-Job Search: Environment Features

▶ Same worker types, firm types, and production function.

▶ Now all workers search; meeting rate is m(Wt,Vt); total search effort is Wt := Ut +ϕEt

▶ Terms of trade when a vacant ỹ-firm meets:
▶ Unemployed x-worker: Nash bargaining where workers get surplus fraction β,
▶ Worker in (x, y) match: Nash bargaining over incremental surplus.

If St(x, ỹ) > St(x, y), worker moves to firm ỹ and gets additional β(St(x, ỹ) − St(x, y)).

▶ Endogenous separation αb
t(x, y) = 1 when St(x, y) < 0.
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Recursive Characterization For Equilibrium Surplus
▶ Can characterize equilibrium with the master equation for the surplus:

ρS(x, y, z, g) = zf(x, y) − (δ + αb(x, y, z, g))S(x, y, z, g)

− m(z, g)
W(z, g)V(z, g)

[
(1 − β)

∫
α(x̃, y, z, g)S(x̃, y, z, g)gu(x̃)dx̃

−ϕ(1 − β)
∫
αp(x̃, y, ỹ, z, g)(S(x̃, y, z, g) − S(x̃, ỹ, z, g))g(x̃, ỹ)dx̃dỹ

+ϕβ
∫
αp(x, ỹ, y, z, g)S(x, y, z, g)gv(ỹ)dỹ

]

− b− β
m(z, g)

W(z, g)V(z, g)

∫
α(x, ỹ, z, g)S(x, ỹ, z, g)gv(ỹ)dỹ

+ λ(z)(S(x, y, z̃, g) − S(x, y, z, g)) +DgS(x, y, z, g) · µg(z, g)
where:

αp(x̃, y, ỹ, z, g) := 1{S(x̃, y, z, g) ≥ St(x̃, ỹ, z, g) ≥ 0} KFE
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On-the-job-search: KFE

▶ The KFE becomes:

dgm
t (x, y) = − δgm

t (x, y)dt

− ϕ
m(Wt,Vt)

WtVt
gm

t (x, y)
∫
αp

t (x, y, ỹ)gv
t (ỹ)dỹdt

+ m(Wt,Vt)
WtVt

αt(x, y)gu
t (x)gv

t (y)dt

+ ϕ
m(Wt,Vt)

WtVt

∫
αp

t (x̃, ỹ, y)gv
t (y)g

m
t (x̃, ỹ)

Et
dx̃dỹdt

back
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Worker Bargaining Power Influences Assortative Matching

Sorting at the ergodic distribution for different worker bargaining power β. Left to right
β = 0 (Lise-Robin ’17), 0.5, 0.72 (benchmark), 1.

Additional parameter calibration: ϕ = 0.2.
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Sorting Over Business Cycles
▶ Study how “mismatch” changes over the business cycle. back

“PAM” pairs: pairs where x & y are close. “Mismatch”: pairs where x & y are not close.
Payne, Rebei, Yang DeepSAM 18 / 30
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Environment: Setting, Bonds, and Households

▶ Continuous time, infinite horizon environment.

▶ There are many bonds, k ∈ {1, . . . ,K}, in positive net supply sk:
▶ Every bond pays the same dividend δ > 0.
▶ Bond k matures at rate 1/τk (so it has average maturity τk).

▶ Populated by a unit-mass continuum of infinitely-lived and risk-neutral investors:
▶ An investor can hold either zero or one share of at most one type of asset.
▶ Investor type j ∈ {1, . . . , J} gets flow utility δ − ψ(j, k) from holding bond k.
▶ Agents switch from type i to j at rate λi,j .

▶ Aggregate (default) state z ∈ {z1, . . . , zn}, switches at rate ζz,z′ .
At state z, asset k pays a fraction ϕ(k, z) of the coupon and the principal.



Distribution and Bargaining

▶ An investor’s state is made up of her holding cost j ∈ {1, . . . , J} and her ownership
status, for each asset type k ∈ {1, . . . ,K} (owner o or non-owner n). Hence the set of
investor idiosyncratic states is:

A = {1n, 2n, . . . , Jn, 1o1, . . . , 1oK, 2o1, . . . 2oK, Jo1, . . . , JoK} (5)

▶ The rate of contact between investors with states a and b is:

Ma,b = κa,bgagb (6)

▶ Agents a, b engage in Generalized Nash bargaining with bargaining power βa,b.



Value Function: Non-Owners

▶ The value function for non-owner with type i, V (in, g, z), is given by:

ρiV (in, g, z) =
∑

a

κin,aα(in, a, g, z)βin,aS(in, a, z, g)

+
∑

k

ξi,k(V (iok, g, z) − V (in, g, z))

+
∑
j ̸=i

λi,j(V (jn, g, z) − V (in, g, z))

+
∑
z′

ζz,z′(V (in, g, z′) − V (in, g, z)) +
∑
a∈A

∂gaV (in, g, z)µg(a, z)

where α(in, jok, g, z) is an indicator for whether the surplus from the trade is positive
S(in, jok, g, z) > 0 and the trade is accepted upon matching.



Value Function: Owners

▶ Value function for an investor of type i holding asset k, V (iok, g, z), is given by:

ρiV (iok, g, z) = δϕ(k, z) − ψ(i, k) + 1
τk

(V (in, g, z) + π(k, z) − V (iok, g, z))

+
∑

a

κiok,aα(iok, a, g, z)gaβiok,aS(iok, a, g, z)

+
∑
j ̸=i

λi,j(V (jok, g, z) − V (iok, g, z))

+
∑
z′

ζz,z′(V (iok, g, z′) − V (iok, g, z)) +
∑
a∈A

∂gaV (iok, g, z)µg(a, z).



Parameter Values: Holding Costs

Maturity (τ)
τ1 = 0.25 τ2 = 1.0 τ3 = 5 τ4 = 10

Agent Type (i)

A δϕ(1, z) δϕ(2, z) δϕ(3, z) δϕ(4, z)
B 0.02 0.02 0.02 0.02
C 0.0 0.0 0.0 0.0
D 0.02 0.02 0.01 0.00

Table: Holding costs: ψ(i, τ).



Parameter Values: Switching Rates



Parameter Values: Participation in Primary Market

Maturity (τ)
τ1 = 0.25 τ2 = 1.0 τ3 = 5 τ4 = 10

Agent Type (i)

A ξ1 ξ2 ξ3 ξ4

B − − − −
C − − − −
D − − − −

Table: Primary market participation: ξ(i, τ).



Parameter Values: Mathing Rates and Bargaining

κa,b =



50, if (a, b) = (in, jok) and i, j ̸= A,
50, if (a, b) = (iok, jok) and i, j ̸= A,
75, if (a, b) = (in,Aok) and i ̸= A,
0, if (a, b) = (iok,Aol) and ∀i,
0, if (a, b) = (in, jn) and ∀i, j,

(7)

βa,b =


0.5, if (a, b) = (in, jok) and i, j ̸= A,
0.5, if (a, b) = (iok, jol) and i, j ̸= A,
0.05, if (a, b) = (in,Aok) and i, j ̸= A,

(8)



Parameter Values: Other Values

Parameter Interpretation Value Target/Source
ρ Discount rate 0.05 Chen at al. (2017)
δ Bond Coupon Rate 0.01

Aggregate State: z ∈ {zL, zM , zH}
ϕ(z) Coupon haircut (0.986, 0.991, 0.997) Chen at al. (2017)
π(z) Principal haircut (0.986, 0.991, 0.997) Chen at al. (2017)

ζM,L, ζM,H Rate from 2 to 1 and 2 to 3 0.1 Crisis every 10 years
ζL,M , ζH,M Rate from 1 to 2 and 3 to 2 0.5 Average crisis duration 2 years

Table: Economic Parameters.



Neural Network Parameter Values

Parameter Value
Number of layers 8
Neurons per layer 100
Activation function GELU(·)
Initial learning rate 10−4

Final learning rate 10−6

Initial sample size per epoch 256
Sample size per epoch 1024
Convergence threshold for target calibration 10−6

Table: Neural network parameters



Endogenous Yield Curve back
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Yeild IRF back
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