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Introduction

• Recent research highlights importance of heterogeneity in macroeconomics.

• Heterogeneous agent (HA) models with aggregate shocks are solved with

global Krusell-Smith (KS) method or local perturbation method.

KS method Perturbation method

Multiple shocks No Yes

Multiple endogenous states No Yes

Estimation/Calibration No Yes

Large shocks Yes No

Risky steady state Yes No

Nonlinearity e.g. ZLB Yes No

This paper: a new efficient, reliable, and interpretable global solution method for

high dimensional HA models with aggregate shocks using deep learning.
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Deep Learning for High Dimensional Models

• Deep learning’s success in high dimensional scientific computing problems.

• Our idea: use deep learning to “learn” policy and value functions in high

dimensional HA model.

• Three key steps to “learn” high-dim functions:

1. Deep neural networks to represent function:

f(x) = Lout ◦ LNh ◦ LNh−1 ◦ · · · ◦ L1(x),

hp = Lp(hp−1) = σ
(
Wphp−1 + bp

)
,

σ : element-wise nonlinear activation function: e.g. max(0, x).

2. Cast high-dim function into an objective function.

3. Efficient optimization: stochastic gradient descent (SGD).

Similar procedure, but more efficient than polynomial approximation.

3



This Paper: DeepHAM Method for HA Model

1. Use neural networks (NN) to represent value & policy functions.

2. Nest sub-NN of generalized moments to represent state distribution.

3. Iteratively update value & policy functions, and generalized moments.

Apply DeepHAM to three economies:

1. Krusell-Smith problem: competitive equilibrium.

2. Krusell-Smith problem with a financial sector (in the paper).

3. Constrained efficiency problem in HA models with aggregate shocks.

Main features:

1. High accuracy compared to other global solution methods.

2. Efficient computational speed (no curse of dimensionality).

3. Interpretability of distribution representation and function mappings.
Literature
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Methodology



Illustration: Krusell and Smith (1998)

• Production economy with a continuum of households: each HH i solves

max
ci,t≥0,ai,t+1≥a

E0

∞∑
t=0

βtu (ci,t)

subject to budget constraint

ai,t+1 = wt ¯̀yi,t +Rtai,t − ci,t

• Idiosyncratic shocks on employment status yi,t.

• Representative firm produces Yt = ZtF (Kt, L̄).

• Aggregate shock Zt ∼ two-state Markov, and enters HH’s problem through

competitive factor prices:

Rt = Zt∂KF (Kt, L̄)− δ, wt = Zt∂LF (Kt, L̄)
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Computational Setup: Krusell and Smith (1998)

Curse of dimensionality shows up in recursive form of HH i’s problem:

V (ai, yi, Z,Γ) = max
ci,a′i

{u(ci) + βEV (a′i, y
′
i, Z
′,Γ′|yi, Z)}

subject to budget and borrowing constraints. Γ: distribution of all HHs’ states.

Krusell-Smith method (KS, 1998; Maliar et al., 2010):

1. Approximate state vector: ŝi = (ai, yi, Z,m1), where m1 is first moment of

individual asset distribution.

2. Log linear law of motion for m1:

log(m1,t+1) = A(Z) +B(Z) log(m1t).

Very costly in complex HA models with multiple assets or multiple shocks.
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DeepHAM: Represent Distribution with Neural Networks

• Consider N -agent Krusell-Smith problem (N finite but large). General

form of value & policy functions are like (ignore y):

V (ai; a1, . . . , ai−1, ai+1, . . . , aN ;Z), c(ai; a1, . . . , ai−1, ai+1, . . . , aN ;Z)

• Approximate with symmetry preserving generalized moments 1
N

∑
iQ(ai),

basis function Q(·) parameterized by (sub) neural networks:

V (ai;
1

N

∑
i

Q1(ai), . . . ,
1

N

∑
i

QJ(ai);Z)

c(ai;
1

N

∑
i

Q̃1(ai), . . . ,
1

N

∑
i

Q̃J(ai);Z)

• Special case: Q(a) = a yields the first moment.

• Algorithm solves generalized moments (GMs) that matter most for policy

and value functions. (“numerically determined sufficient statistics”)

• GMs provide interpretabilitiy on how heterogeneity matters.

7



DeepHAM: Represent Distribution with Neural Networks

• Consider N -agent Krusell-Smith problem (N finite but large). General

form of value & policy functions are like (ignore y):

V (ai; a1, . . . , ai−1, ai+1, . . . , aN ;Z), c(ai; a1, . . . , ai−1, ai+1, . . . , aN ;Z)

• Approximate with symmetry preserving generalized moments 1
N

∑
iQ(ai),

basis function Q(·) parameterized by (sub) neural networks:

V (ai;
1

N

∑
i

Q1(ai), . . . ,
1

N

∑
i

QJ(ai);Z)

c(ai;
1

N

∑
i

Q̃1(ai), . . . ,
1

N

∑
i

Q̃J(ai);Z)

• Special case: Q(a) = a yields the first moment.

• Algorithm solves generalized moments (GMs) that matter most for policy

and value functions. (“numerically determined sufficient statistics”)

• GMs provide interpretabilitiy on how heterogeneity matters.

7



DeepHAM: Represent Distribution with Neural Networks

• Consider N -agent Krusell-Smith problem (N finite but large). General

form of value & policy functions are like (ignore y):

V (ai; a1, . . . , ai−1, ai+1, . . . , aN ;Z), c(ai; a1, . . . , ai−1, ai+1, . . . , aN ;Z)

• Approximate with symmetry preserving generalized moments 1
N

∑
iQ(ai),

basis function Q(·) parameterized by (sub) neural networks:

V (ai;
1

N

∑
i

Q1(ai), . . . ,
1

N

∑
i

QJ(ai);Z)

c(ai;
1

N

∑
i

Q̃1(ai), . . . ,
1

N

∑
i

Q̃J(ai);Z)

• Special case: Q(a) = a yields the first moment.

• Algorithm solves generalized moments (GMs) that matter most for policy

and value functions. (“numerically determined sufficient statistics”)

• GMs provide interpretabilitiy on how heterogeneity matters.

7



DeepHAM: Represent Distribution with Neural Networks

• Consider N -agent Krusell-Smith problem (N finite but large). General

form of value & policy functions are like (ignore y):

V (ai; a1, . . . , ai−1, ai+1, . . . , aN ;Z), c(ai; a1, . . . , ai−1, ai+1, . . . , aN ;Z)

• Approximate with symmetry preserving generalized moments 1
N

∑
iQ(ai),

basis function Q(·) parameterized by (sub) neural networks:

V (ai;
1

N

∑
i

Q1(ai), . . . ,
1

N

∑
i

QJ(ai);Z)

c(ai;
1

N

∑
i

Q̃1(ai), . . . ,
1

N

∑
i

Q̃J(ai);Z)

• Special case: Q(a) = a yields the first moment.

• Algorithm solves generalized moments (GMs) that matter most for policy

and value functions. (“numerically determined sufficient statistics”)

• GMs provide interpretabilitiy on how heterogeneity matters.

7



DeepHAM: Represent Distribution with Neural Networks

• Consider N -agent Krusell-Smith problem (N finite but large). General

form of value & policy functions are like (ignore y):

V (ai; a1, . . . , ai−1, ai+1, . . . , aN ;Z), c(ai; a1, . . . , ai−1, ai+1, . . . , aN ;Z)

• Approximate with symmetry preserving generalized moments 1
N

∑
iQ(ai),

basis function Q(·) parameterized by (sub) neural networks:

V (ai;
1

N

∑
i

Q1(ai), . . . ,
1

N

∑
i

QJ(ai);Z)

c(ai;
1

N

∑
i

Q̃1(ai), . . . ,
1

N

∑
i

Q̃J(ai);Z)

• Special case: Q(a) = a yields the first moment.

• Algorithm solves generalized moments (GMs) that matter most for policy

and value functions. (“numerically determined sufficient statistics”)

• GMs provide interpretabilitiy on how heterogeneity matters.

7



DeepHAM Algorithm: General Procedure

• Formulate discrete time N -agent HA models, solve value and policy

functions parameterized by neural nets V (ai, yi, Z,Γ), c(ai, yi, Z,Γ).

• Parameterize two parts of mapping:

1. Distribution Γ 7→ J generalized moments 1
N

∑
iQj(ai).

2. (ai, yi, Z, { 1
N

∑
iQj(ai)}) 7→ c, V .

• Iteratively update value and policy functions. In each iteration:

1. Simulate stationary distribution with the latest policy.

2. Given policy function, update value function. details

3. Given value function, optimize policy function.
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DeepHAM: Policy Function Optimization

In iteration k, given V (k)(s), optimize policy C(k)(s) on simulated paths.

In N -agent competitive equilm problem, when solving agent i’s problem,

fix other agents’ policy from last “play”. Iterate the following:

1. At “play” `+ 1, last play’s policy C(k,`)(s) is known.

2. For agent i = 1, solve for her optimal policy C(k,`+1)(s):

max
C(k,`+1)(s)

Eµ(C(k−1)),E

(
T∑
t=0

βtu (ci,t) + βTV (k)(si,T )

)
subject to others all following C(k,`)(s) in the first T periods.

3. All agents adopt the new policy C(k,`+1)(s) in “play” `+ 1.

Optimization solved on Monte Carlo simulation with N agents on a large

number of sample paths in a computational graph.

9



DeepHAM: Policy Function Optimization

In iteration k, given V (k)(s), optimize policy C(k)(s) on simulated paths.

In N -agent competitive equilm problem, when solving agent i’s problem,

fix other agents’ policy from last “play”. Iterate the following:

1. At “play” `+ 1, last play’s policy C(k,`)(s) is known.

2. For agent i = 1, solve for her optimal policy C(k,`+1)(s):

max
C(k,`+1)(s)

Eµ(C(k−1)),E

(
T∑
t=0

βtu (ci,t) + βTV (k)(si,T )

)
subject to others all following C(k,`)(s) in the first T periods.

3. All agents adopt the new policy C(k,`+1)(s) in “play” `+ 1.

Optimization solved on Monte Carlo simulation with N agents on a large

number of sample paths in a computational graph.
9



Computational Graph for Policy Function Optimization

max
ΘC

Eµ(C(k−1)),E

(
Ũi,T + βTVNN(si,T ; ΘV )

)

HH budget

constraint

+

HH budget

constraint

Policy

NN

Value

NN

HH budget

constraint

FOC FOC FOC

Policy

NN

Policy

NN

Policy

NN

Budget constraint ai,t+1 = (rt + 1− δ)ai,t + wt ¯̀yi,t − ci,t. st = (ai,t, yi,t, Zt,Γt).

Cumulative utility Ũi,t =
∑t
τ=0 β

τu (ci,τ )
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Remarks on optimization over simulated paths

• Agents formulate expectation over future prices through simulated

paths: no perceived law of motion needed.

• Can be applied to other optimization objectives: Euler equation

error, etc.

• Our objective formulation: easily extend to constrained efficiency
problem.

1. Competitive equilibrium: fictitious play: .

2. Constrained efficiency: optimize all agents’ policy together.

11



Accuracy Results for Krusell-Smith Problem

Method and Moment Choice Bellman error Std of error

KS Method (Maliar et al., 2010) 0.0253 0.0002

DeepHAM with 1st moment 0.0184 0.0023

DeepHAM with 1 generalized moments 0.0151 0.0015

Definition of Bellman Error

• Highly accurate compared to Krusell-Smith (KS) method. solution comparison

• Even only with first moment as model input, DeepHAM outperform KS

method due to better capture of nonlinearity.

• Generalized moment yields more accurate solution than the first moment,

as it extract more relevant information.
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Interpretation of the Generalized Moment (GM)

20 30 40 50 60
asset a

38.0
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39.0

39.5

Q
(a

)

Plot of Q1(a)

38.75 39.00 39.25 39.50
Generalized moment

102.3

102.4

102.5

102.6
Value for zi

t = 0, Zt = Z l

38.75 39.00 39.25 39.50
Generalized moment

104.0

104.1

104.2

Value for zi
t = 1, Zt = Z l

38.75 39.00 39.25 39.50
Generalized moment

102.9

103.0

103.1

Value for zi
t = 0, Zt = Zh

38.75 39.00 39.25 39.50
Generalized moment

104.2

104.3

104.4

Value for zi
t = 1, Zt = Zh

Map 1
N

∑
iQ1(ai) to value function

• Basis function concave in asset, value function is linear wrt the GM.

• Heterogeneity matters! Unanticipated redistributive policy shock: asset

from rich to poor HH ⇒ generalized moment ↑⇒ unshocked agents’

welfare ↓. No effect with KS method, as first moment not change.
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DeepHAM for Constrained Efficiency Problem

• Constrained efficiency’s problem is hard to solve in HA models.

• Literature only solves for HA models without aggregate shocks

(Davila, Hong, Krusell, Rios-Rull, 2012; Nuno and Moll, 2018).

• DeepHAM solves constrained efficiency problem as easily as solve

competitive equilibrium, just to remove the fictitious play procedure.

• We solve constrained efficiency problem of Davila et al. (2012), and

that with aggregate shocks and countercyclical unemployment risk.

• It takes DeepHAM 20 minutes to solve Davila et al. (2012) on GPU,

which takes conventional methods > 10 hours on CPU.
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Constrained Efficiency for HA Models w or w/o Agg Shock

No aggregate shock Aggregate shock

Market Constrained Opt. Market Constrained Opt.

Average assets 30.635 119.741 34.296 95.811

Wealth Gini 0.864 0.862 0.812 0.878

Consumption Gini 0.615 0.386 0.578 0.388

• Both models: constrained optimal capital � capital in competitive

equilibrium.

• Why? Overcome pecuniary externality: K ↑⇒ wage ↑, R ↓,
redistribute from rich HHs to poor HHs (high labor share).

• Constrained optimal capital in model with agg shock < without agg

shock.
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Constrained Efficiency for HA Models w or w/o Agg Shock
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Labor share distribution

Agg shock ⇒ precautionary saving ↑ by poor HHs ⇒ labor share lower

than model w/o agg shock. So planner raises K less in constrained

efficient equilibrium.
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Conclusion

• We develop DeepHAM, an efficient, reliable, and interpretable deep

learning based method to solve HA models with aggregate shocks globally.

• Deep learning based model reduction informs interpretable generalized

moments of distribution that matters.

• For the first time, we solve constrained efficiency problem in HA models

with aggregate shock.

• Macroeconomics has not fulfilled the full potential of deep learning!

1. Empirically realistic HA models with many agent types, states and

shocks.

2. HA(NK) models that need global dynamics: exog/endog disasters,

asset pricing, welfare and optimal policy.
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Thank You!
Comments and questions are welcome!

Emails: yuchengy@princeton.edu
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Literature

• Solving HA models with aggregate shocks:

1. Global KS method: Krusell and Smith (1998), Den Haan (2010) project,

Fernandez-Villaverde et al. (2019), etc.

2. Local perturbation method: Reiter (2009), Ahn et al. (2017), Winberry

(2018), Bayer and Luetticke (2020); Boppart, Krusell and Mitman (2018),

Auclert et al. (2021), etc.

• Deep learning for high dimensional problems:

1. Stochastic control & PDE: Han and E (2016), Han, Jentzen and E (2018).

2. Macroeconomics: Duarte (2018), Fernandez-Villaverde et al. (2020, 2021),

Maliar et al. (2021), Azinovic et al. (2022), etc.

• How heterogeneity matters in macro: Kaplan and Violante (2018), Kaplan et al.

(2018), Auclert (2019), etc.

• Constrained efficiency problem in HA models: Davila et al. (2012), Nuno and

Moll (2018), Bhandari et al. (2021), etc.

back
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DeepHAM: Value Function Learning

Define cumulative utility for HH i up to t:

Ũi,t =

t∑
τ=0

βτu (ci,τ ) .

In iteration k, given policy function C(k−1)(s):

1. Sample states s from the stationary distribution. Then the value of each

state s can be approximately calculated as cumulative utility in the

following T (T large enough) periods following policy C(k−1)(s):

Ṽ (k)(s) ≈ EŨT = E

T∑
τ=0

βτu (ci,τ )

2. Learn value function V (k)(s) parameterized by deep neural networks with

regression. back
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Solution Comparison
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back
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Accuracy Measures: Bellman Equation Errors

For the KS problem, only using solved value function V (·), Bellman equation error is

errB = V (ai, yi, Z,a
−i,y−i)−max

ci

u(ci) + β
∑

y′,Z′,y′−i

V (a′i, y
′
i, Z
′, â′

−i
,y′
−i

)

×Pr
(
Z′, y′i,y′

−i|Z, yi,y−i
)}

back
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